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Abstract — Radar-based detection of traffic gestures can
play an important role in the interaction between autonomous
vehicles (AVs) and vulnerable road users (VRUs). However,
it is error-prone without information about the orientation of
the VRU, from which the recipient of the gesture’s message
can be inferred. Hence, this paper proposes a neural network
with two output branches for joint gesture classification and
orientation estimation. As input serve radar target lists derived
from data measured by an incoherent radar sensor network.
By training the whole model on a combined loss, the neural
network simultaneously produces a gesture prediction and an
orientation estimate. The proposed method is validated on a
comprehensive dataset containing radar data over a broad range
of orientations from 35 participants. On this dataset, it achieves a
gesture recognition accuracy of 92.43% and a mean orientation
estimation error of 8.02°.
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I. INTRODUCTION

A particular challenge for autonomous vehicles (AVs)
navigating urban areas is the interaction with vulnerable
road users (VRUs) like pedestrians in scenarios necessitating
communication. One way to resolve these situations is to
make AVs understand the gestures performed by pedestrians.
However, as illustrated in Fig. 1, the correct distinction
between different gestures is not sufficient to guarantee their
correct interpretation: In complex scenarios involving multiple
vehicles, it is also crucial to have knowledge about the
orientation of the gesture performing pedestrian in order to
identify the recipients.

While the orientation information is readily available when
doing camera-based gesture recognition e.g. from 3D skeletal
poses [1], it is harder to obtain when using other sensor
types such as radar sensors. Radars are robust with respect
to environmental conditions and have been shown to be
able to distinguish different activities [2] and gestures [3]
at distances in the meter range, but they do not inherently
provide orientation information. So far, the majority of work
on radar-based orientation estimation is concerned with general
objects [4] and cars [5], [6], whose ground truth position can
be described by rigid bounding boxes. However, bounding
boxes might be hard to apply to VRUs performing traffic
gestures, since their appearance in the radar image strongly
depends on their pose, which in turn depends on the gesture
itself. Therefore, this paper proposes a neural network that
directly estimates the orientation of gesturing pedestrians,
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Fig. 1. Illustration of the orientation challenge: The orientation of the
gesturing pedestrian determines whether a detected gesture is intended for
the AV or an other traffic participant (TP).

Fig. 2. Positions of the detected targets for a pedestrian signaling “Stop”,
measured under different orientations and accumulated over 30 frames.

while simultaneously performing gesture classification, and
thus implicitly leveraging the gesture information. The
neural network consists of two parts: A PointNet [7] for
per-frame feature extraction, and a subsequent long short-term
memory (LSTM), from whose outputs gesture predictions and
orientation estimates are inferred in separate branches. The
radar signal processing is explained in Sec. II, while the neural
network is introduced in detail in Sec. III. Finally, experimental
results on a comprehensive measured multistatic radar dataset
are presented in Sec. IV.

II. GENERATION OF RADAR TARGET LISTS

The proposed neural network operates on multistatic radar
target lists recorded by an incoherent radar sensor network. The
fusion of the radar data is done within the neural network itself.
Therefore, the extraction of target lists and their preprocessing
is done independently for each sensor. First, range-Doppler
maps are extracted for each chirp sequence frame by
computing the 2D fast Fourier transform along the samples and
chirps [8]. In order to obtain a compressed representation of the
range-Doppler maps that preserves the relevant information,
targets are extracted by means of the ordered statistics constant
false alarm rate (CFAR) algorithm [9]. Besides the target’s
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Fig. 3. Illustration of the joint gesture classification and orientation estimation. An LSTM learns on sequences of extracted per-frame feature vectors, and the
model is trained on the joint loss Lgest+Lori.

range Rn, velocity vn, and signal-to-noise ratio SNRn, the
azimuth angle θn is computed for each target as well as its
positions [xn, yn]. The positions of the accumulated targets of
30 consecutive frames are shown for a “Stop” gesture under
different orientations in Fig. 2. Each detection’s position is
referenced to the pedestrian’s estimated position obtained from
a regression model to obtain its normalized position described
by xnorm

n and ynorm
n . All target parameters are bundled in a radar

feature vector ~tn =[Rn,vn,θn,x
norm
n ,ynorm

n ,SNRn,in] describing
the target, and the node index in =0, ..., Nn−1 determines to
which of the Nn radar sensor nodes the detection belongs. The
feature vectors of the N(if, in) CFAR detections form the radar
target list for the radar node in and the frame if.

III. JOINT GESTURE CLASSIFICATION AND ORIENTATION
ESTIMATION ALGORITHM

The joint gesture classification and orientation estimation
algorithm consists of two main parts, as shown in Fig. 3.
First, for each frame the target list is computed out of
the detections in the range-Doppler map, which is then
converted into a fixed-length feature vector describing the
input. From this sequence of vectors, gesture predictions
and orientation estimates are inferred by making use of the
temporal information encoded in the vector sequence. In this
work, the algorithm is optimized for sequences of 30 chirp
sequence frames at a frame rate of 15 fps, so each prediction
incorporates the previous two seconds of observation.

A. Spatial Filtering

Since measurements in complex environments contain
reflections from a multitude of targets, the target lists are
cleaned for each frame in a spatial filtering step. Based on
a pedestrian position estimate [x̃p, ỹp], e.g. out of a pedestrian
detection step, target list entries are removed if they don’t fulfill
the inequation

√
(xn − x̃p)

2
+ (yn − ỹp)

2 ≤ dfilt , (1)

i.e. if they lie outside of a circular filter area with radius dfilt,
which is set to dfilt =2 m.

B. Random Target Sampling and Input Fusion

While it is advantageous for the training process to have
a constant number of targets per frame, the actual number
of targets after spatial filtering, Nfilt(if, in), varies strongly
depending on the gesture, pedestrian position, and physiology.
Therefore, the target lists are adjusted to equal lengths to
achieve a constant number of P targets per frame and node.
In case that Nfilt(if, in)<P , the target list is zero-padded by
adding empty target vectors. In contrast, if Nfilt(if, in)>P then
P targets are sampled randomly from the target list. Finally,
the target lists from all radar nodes are fused into a single
target list of length NnP , where the information about which
node detected a target is still kept by the node index in.

C. Per-frame Feature Vector Extraction

The final step in the per-frame feature extraction is
the generation of a fixed-length feature vector out of the
input target list using PointNet [7]. By this, the sparse,
multi-dimensional input point clouds are transformed into a
structured representation suitable for the subsequent sequence
processing. The PointNet approximates a function f operating
on the input target list {~t1, ...,~tNnP } by a symmetric function g
that summarizes the outputs of a point-wise function h applied
to the targets ~tn individually, i.e.

f({~t1, ...,~tN}) ≈ g(h(~t1), ..., h(~tN)) . (2)

The model used for feature extraction computes a
1024-element vector h(~tn) for each radar feature vector,
and the vectors of all NnP targets are then fused into a single
feature vector of shape 1024×1 describing the input target
list by taking the element-wise maximum over the targets.
Note that since the radar target features are either linked
through non-linear relationships or not linked at all, the input
transform used in [7] is omitted.



D. Sequence Processing for Joint Classification and
Regression

To infer predictions based on multiple consecutive frames,
a bidirectional LSTM (BiLSTM) is optimized to learn
the temporal dynamics of feature vector sequences. The
resulting BiLSTM has two recurrent layers for both forward
and backward direction, and each layer has 256 neurons.
The bidirectional model enhances per-frame predictions
particularly at the beginning of the observation interval,
i.e. the frames most distant to the recently measured one,
which enhances the per-sequence results. Thus, the BiLSTM
output at each frame encapsulates information from previous
and following frames. From the BiLSTM output, per-frame
predictions inferred: For the per-frame gesture prediction, the
BiLSTM output is passed through two fully-connected (FC)
layers producing a score value for each of the eight gestures,
based on which the classification loss Lgest is computed.
In order to simultaneously estimate the orientation under
which the gesture is performed, the output of the BiLSTM
is passed through a separate stack of FC layers with a single
output neuron representing the predicted orientation. From this
prediction, the orientation loss Lori is computed. Then, the
whole model is trained on the per-frame loss

L = Lgest + Lori (3)

= − log (ŷgest) + (ŷori − y′ori)
2
, (4)

which consists of the cross-entropy loss Lgest with the
gesture prediction ŷgest and the mean squared error loss
Lori with the orientation prediction and label, ŷori and y′ori,
respectively. Per-sequence gesture predictions are obtained
from the per-frame gesture scores in a sequence pooling step
by averaging the scores over the frames, resulting in a single
prediction for the recently observed time interval. Similarly,
per-frame orientation estimates are pooled into a per-sequence
orientation prediction by averaging.

The PointNet+LSTM model is trained end-to-end for 100
epochs using stochastic gradient decent with momentum to
minimize L, with a weight decay of 0.001. The initial learning
rate is set to 0.004 and reduced by a factor of 0.3 after 50 and
60 epochs, respectively. Nfilt =100 targets are used as input per
frame and node, and all radar target features are normalized
to the unambiguous ranges of the sensors. Note that constant
accuracy levels are achieved over a wide range of Nfilt. The
orientation labels are rescaled by y′ori =yori/90, with the label
in degree, yori, to balance the initial values of Lgest and Lori.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The dataset is recorded with an incoherent radar sensor
network comprising three multiple-input multiple-output radar
sensors with chirp sequence modulation, transmitting at
77 GHz. Each sensor has a range resolution of ∆R=4.5 cm,
a velocity resolution of ∆v=10.7 cm s−1, and an array with
12 virtual antenna elements used for azimuth beamforming.
As shown in the top-view sketch in Fig. 4, the maximum
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Fig. 4. Top-view sketch of the experimental setup consisting of an incoherent
radar sensor network (r0, r1, r2) and a stereo video system (c0, c1) for ground
truth capture. In addition, the pedestrian positions during the measurements
as derived by the stereo system are shown.
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Fig. 5. Histogram of the orientation values in the measured dataset.

sensor distance is 140 cm. In order to avoid interference,
all sensors receive a common trigger and transmit chirps
with a slight sensor-dependent time delay. The radar sensor
network is complemented by two RGB cameras calibrated for
stereo depth estimation and synchronized to the radar frame
starts. The stereo video data is utilized for the generation of
ground truth information about the 3D skeletal pose of the
participants. For this purpose, skeletal keypoints are detected
with Detectron2 [10] and their 3D positions are computed by
triangulation. From the 3D skeletal information, the orientation
labels for the computation of Lori are extracted from the
positions of the hip joints, with the definition of the orientation
values as shown in Fig. 4.

B. Dataset

Radar and stereo video data are recorded for eight different
traffic gestures, namely “Fly”, “Come Closer”, “Slow Down”,
“Wave”, “Push Away”, “Wave Through”, “Start”, and “Stop”,
which are visualized in [3]. The gestures are recorded for
35 participants, under different orientations, and both indoors
and outdoors. In order to properly cover the presumably most
common orientations, every participant was recorded under
0° and 90°. In addition, up to three measurements were
taken under arbitrary orientations to reflect the variability in
real-world scenarios. The distribution of the measurements



Table 1. Cross-validation classification accuracy (Gest. Acc.) and orientation
estimation mean error (ME Ori. Est.) results

Training procedure Gest. Acc. ME Ori. Est.

Training on Lgest 92.1% -
Training on Lori - 9.9°
Training on Lgest+Lori 92.4% 8.0°
Training on Lgest+Lori, corr. class. 100.00% 7.8°
Training on Lgest+Lori, wrong class. 0.00% 10.9°
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Fig. 6. CDF of the orientation estimation errors.

over the orientation angles as extracted from the stereo video
data is shown in Fig. 5. Moreover, recordings are conducted
at ranges of 4 m to 7 m, as shown in Fig. 4. After the radar
signal processing, measurements are subdivided into snippets
of two seconds, resulting in 15,700 samples for training and
testing.

C. Classification and Orientation Estimation Accuracy

For the experimental validation of the proposed algorithm,
the dataset is split into five subsets, each containing data from
seven participants exclusively. Then, the neural network is
trained 5-fold with one subset excluded for cross-validation
in each fold. The average gesture recognition accuracies and
mean orientation estimation errors are reported in Table 1.
When training on the combined loss, the model achieves a
classification accuracy of 92.43 % and a mean orientation error
of 8.02°. Moreover, Fig. 6 shows the cumulative distribution
function (CDF) of the error in the orientation estimate, with
the share of samples exceeding the application-dependent
acceptable error threshold being an important criterion.

In addition, the impact of faulty gesture detections on
the orientation estimation accuracy is investigated. For the
correctly classified samples, the orientation estimation is
slightly better than the overall value. Contrary, the mean error
increases to 10.88° in cases where the classifier branch predicts
a wrong gesture, indicating that these samples are inherently
less informative, e.g. due to low numbers of detections.
Moreover, by comparing the results achieved with training on
the combined loss L with the orientation estimation accuracy
achieved by training on Lori only, it can be seen that the

simultaneous training for gesture recognition and orientation
estimation significantly enhances the model’s performance,
reducing the mean error by 1.86°. This demonstrates that the
additional training on the classification task leads to more
descriptive LSTM outputs, providing the orientation estimation
layers with additional cues. Furthermore, simultaneous training
doesn’t negatively affect the gesture recognition accuracy
compared to training the model with only the gesture branch on
Lgest, with cross-validation accuracy even slightly increased.

V. CONCLUSION

In this paper, the problem of ambiguous non-verbal
communication in traffic scenarios due to gestures performed
under unknown VRU orientations was approached by a
radar-based joint gesture recognition and orientation estimation
model. A PointNet is used to extract feature vectors out of
multistatic radar target lists, and two independent branches
following a BiLSTM simultaneously predict the gesture and
orientation. Based on a challenging dataset it is shown that
the joint approach with training on a combined loss is
superior to the standalone orientation estimation, with the
mean orientation estimation error at 8.02° being 1.86° lower.
Also importantly, the joint model still provides a high gesture
recognition accuracy of 92.43 %, even slightly higher than the
standalone classifier.
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