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Estimation Functions for Noisy Signals
and their Application to a Phaselocked FM Demodulator
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It is often difficult or even not practicable to compute the spectrum of a nonlinear function
whose argument is a noisy signal. Therefore, an approximation method is introduced that sub-
stitutes nonlinear functions of noisy signals by so-called estimation functions with elementarily
determinable spectra. The application of this technique is demonstrated with the example of a
phaselocked FM demodulator. Thereby, new results can be found.

Schiitzfunktionen fiir verrauschte Signale und ihre Anwendung
auf einen Phaselock-FM-Demodulator

Die exakte analytische Berechnung der Spektren von nichtlinearen Funktionen verrauschter
Signale ist hiufig schwierig oder gar nicht durchfiihrbar. Daher wird ein Niherungsverfahren
vorgestellt, das nichtlineare Funktionen verrauschter Signale durch sogenannte Schiitzfunktionen
mit einfach bestimmbaren Spektren ersetzt. Die Anwendung dieses Verfahrens wird an einem
Phaselock-FM-Demodulator demonstriert. Dabei werden neue Ergebnisse gewonnen.

1. Introduetion

For the solution of numerous technical problems
the computation of the power spectrum of non-
linear functions of noisy signals is necessary. Even
in more or less elementary cases this leads to major
difficulties. An example which drastically illus-
trates these difficulties is the evaluation of the out-
put spectrum of an ideal FM discriminator. ¥. M.
Gardner comments on this [1]:

“Difficulty of the problem is perhaps best illus-
trated by the fact that the exact analysis was
not published until some 45 years after the
nature of FM was recognized (2], [3], [4]”.

Therefore, approximation methods are needed
to limit the mathematical effort to an acceptable
amount. Such a method will be introduced here
and verified by measurements using as example
a phaselocked FM demodulator.

2. Estimation Functions for Neisy Signals [5]

Let v(f) be a noisy signal. If »(f) is the input
signal of a two-port with the transfer character-
istic ¥ =f(x), then the output signal can be de-

ibed
seribec a3 y(t) =l (0)]. (1)

{(z) may be of arbitrary nonlinearity. Therefore,
the usual expansion of f(z) in powers of z is often
of no advantage, especially, if the nonlinearity is
essential.

For lack of better solutions, approximations of
the output signals are of interest, even if this
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approximation is only useful for comparatively low
noise applications. In this case, an expansion of the
output signal in noise quantities is suggested in-
stead of an expansion of the transfer characteristic
in x.

To implement this expansion in a mathematically
correct way, the noisy signal »(#) must be described
in detail. »(f) is a function of a signal wug(f) and
bandlimited noise ux (t):

v(t) = V[us(t), ux(t)]. 2
If necessary, » (t) can be reduced to an elementary

superposition of ug(t) and ux(¢) by introduction
of a further (thought) two-port. Therefore, in the

following v(t) = ug(t) -+ ux(f) ®)

is assumed. According to S. O. Rice [6], ux(f) can
be described as

it

un(t) = > dig cos (wet -+ 1 Awt + @e -+ @i) . (4)

fom =
we/27 is the centre frequency of the noise band and
B:=(2m+ 1)Aw/2x (5)

is its bandwidth. 4; and ¢; are random variables
with probability densities

Puslil) = exp ( - 2—*‘;) O (), (6)
1 .
Poi(ps) == 9 [O(p1) — O(pi — 27)]. (7

@ is the unit step function; o7 is proportional to the
available power of the noise signal within a band
with centre frequency (we--i4w)/2= and band-

width Af = Aw[2 7. (8)
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If ¢ > denotes the expected value referring to the
(4m - 2) variables 4; and ¢y, then the mean power

of uw () is proportional to
"

Wx )y = 2 df. 9)
1= —m
For white noise, the following holds:
02 =4REkTAf = 4 RNAf,

(uk(8)> = 4RETB = 4 RN, B .

(10)
(11)
The average power of the useful signal is obtained
by computing the time average of uZ(f). Denoting

the time average with a bar, the input signal-to-
noise ratio of the above mentioned two-port is

LR 10) ug(t)
= o= P 12
Py k() | f 2 (12)
Large signal-to-noise ratio means
ug(8) > CuX (6. (13)
Then
u§ (1) > ik (1) = (14)

= > o} >0F={i5/2 forall

T=—m

i =m

must hold, Therefore, a Taylor series expansion
in 4; of the two-port output signal y=f[v(f)] is
suggested.

Unfortunately in general

ud (f) > i (15)

does not always hold, even if (14) holds. This is,
for instance, the case for all zero crossings of ug(#).

Now the fact is that f(¢) is only a sample function
of a stochastic process. Therefore, it is not the
special dependence of f{f) on the #; which is of
interest but the average spectrum of f(£) in depen-
dence on the <47>. The use of functional analytic
methods [7] shows that under these suppositions
a Taylor series expansion in #; is possible. A mathe-
matical proof is given in [5].

In this context, f[v(#)] may be approximated by
a Taylor series of n-th order:

n 1 m
?J)I§=Z+Zﬁ 2 (da—cu) ...
WS kY S

tl..tk=—m

OFfv)

(Wi — cir) Ogr ... g |z (16)

where U= (Tppy--r,Tim) (17)
is a vector formed by the 4; and

€= (C-m, - Cm) (18)

is the point of expansion. For low noise ¢=0 is a
sensible point of expansion. Then f; (v) is reduced to

W a
o =10+ 5wl
Lt g e
T2.=— l]auzauauo—F )
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It should be noted that f, (v) is not an expansion
in the conventional sense. [ (v) does not approxi-
mate f(v) point by point so that |f(v)—fu(v)] is
small in a certain neighbourhood of U="0. fu(v)
apprommates f(v) in a way that {[f(v ]‘n( 12> is
small in a certain neighbourhood of #="¢. Thus,
fx (v) does not approximate the sample function f(v)
in its values but the stochastic process f(v) in its
second order moments. Therefore, in the sequel,
fo(v) ig called “n-th order estimation function for
HON

The evaluation of a spectrum frequently turns
out to be simpler when using estimation functions
instead of the original sample functions, because
f»(v) is a polynomial expansion in #;. To obtain the
spectrum, the autocorrelation function of f,(v) is
determined as

Bpn(t 4 7, 1) 1= <{fu(t + 1) fu (8> - (20)

In general, fn(v) is nonstationary. Thus, Ry,
does not only depend on 7 but also on ¢ This is,
for example, true when dealing with noisy fre-
quency modulated signals. In this case, the average
autocorrelation [8] of f, is determined as

= 1
Byp(r) :=lim - J"an t+7,0)de. (21)
1> o0 207 -
The average spectrum is then
S (f) = ‘f Rf/,b Ye~iZnfrdy, (22)

Frequently, the noise portion of Sy, (f) differs only
little from a spectrum that could have been ob-
tained from f,(v) with a marginal condition that
enforces the stationarity of the process. This is true
for noisy ¥M signals with periodic modulation [5].
It is, therefore, advantageous to define “‘stationary
estimation functions” Fsn ()

fon (v) 1= [ () [si= ‘%‘[fn(” — f@) [ =2 [w-
o is the marglnal condition that enforces statlon-
arity.

As in the case of “normal’ Taylor series expan-
sions, it depends on the special process f whether
the expansion holds only for a small or for a larger
neighbourhood of the expansion point.

3. The Ideal FM Discriminator

It is known that under certain circumstances
phaselocked FM demodulators work like ideal
diseriminators. It is, therefore, useful first to ex-
amine the ideal FM discriminator to get results
for purposes of comparison.

If the useful signal wg(f) is modulated in fre-
queney, then it can be described as

ug (f) = e cos [wet - @e + (P(t)] - (24)
The information to be transmitted is contained in
the time derivative of ¢(f). With eqs. (3) and (4)
the noisy signal »(¢) is obtained as

v(t) = Ur(f) cos (wet + @e) —

— Us(t) sin (wet + @e) (25)
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with
Uy (t) = decos p(f) + > dgcos (Gdwt -+ @i), (26)

= —1mn

Us(t) = desing(f) + § digsin (Aot + @) . (27)

= —m

Then, v(f) can be written as

v(t) = R(t) cos [wcl + e + @ ()] (28)

where tan g (f) := %2% 29)
1

and R2(t):= U%(t) + Us(). (30)

Similar results were given by S. O. Rice [6]. From
the eqs. (26)—(28) it can be concluded that

Ui() _ Us()

k@)= cos (1) = sing®) (1)
In [10] it is shown that in general
R(t) += K@')'?Ui%(‘t‘) (32)

and that R(f) is continuously differentiable. This is
important for the expansion of R (¢) which is neces-
sary when examining the phaselocked FM demodu-
lator.

An ideal FM discriminator produces an output
signal (33)

U1 Us(t) — Uz ('5&]17(’5)

up(t) = K ¢(t) = K 210

out of a signal v(t) as in eq. (28). up(¢) shall now
be expanded into estimation functions at @ =09.
The 0-th order estimation function then describes
the noise free case:

upo(t) = up () |n=5= K ¢(f).

(p (1) is defined in eq. (24).)

That is the expected result. To obtain stationary
estimation functions, the marginal condition
@ (t) =0 is chosen. In [5]is shown that this condition
does not influence the noise spectrum of the de-
modulated signal essentially within the baseband.
Then (35)

usp1 (f) = up () [i=s -+ [wpx () — wn () [-3] lg=0 =

= Kip)+ 3 g lun () — K¢ (0])i=s

=0

(34)

0t

is a first order stationary estimation function. The
evaluation of eq. (35) yields (36)

tAew cos (1 Awt 4 @g) .

. m ZA%.
usp1(t)y = Ko(t) + K Z -

f= —m We

This is known as the first order approximation

that could have been obtained by different methods

[91.
A second order stationary estimation function
is given by (37)

uspe () = usp1(t) + 3
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Then
m £ -
ugpe(t) = Ko () + K 2 ;L; i Awcos(t Awt -+ @) —
= —m we

(38)

Aw cos[(i+7) Awt -+ @i+ @;]

is obtained. To evaluate the spectra of ugpa (f) and
ugps (t), the abbreviations

o) == K z ;—i idweos(tdwt + @),  (39)
i=-—-m "c
Ky Yy
va(t) = — Jj;_m 42 ) (40)

Aw cos[(¢ + ) Aot + @i + @5]

are introduced.

The individual sum terms in eq. (39) are all un-
correlated. Therefore, the double-sided spectral
density Sp1 (i Af) is given as (1)

. 2
K2<{g)’734|w cos (1 Adwt -+ @) \
(3

/

S (e Af) Af = for —m=Zi=m,
0 for |i|>m.
Tn case of white noise it follows that (42)
K2(2TciAf)2/12%-4RN0
S’ul(@A]t): for —ﬂ%éigm,
0 for |i|>m.
Tn the limit Af—0; idf —f
(43)

RN
S (f) = @2 TN KO+ Bi2) — 61— B2)]

is obtained. @ is the unit step function. Then the
one-sided spectral density is (44)

N
Ss(f) = =K 5>~ [0() — O — B2)]1/*
81

where Pg; = #2/8 E is the power of the useful signal
at the input of the ideal discriminator. Eq. (44)
shows the known quadratic behaviour of demod-
ulated low-noise FM signals.

v1(t) and wa(t) are uncorrelated. Therefore, the
total spectrum of the noise portion of ugpa(?) is
given by the superposition of the spectra for »1(t)
and v3 (). By rearrangement of the series in eq. (40),
the sum terms are ordered according to increasing
frequencies:

K 2m2m—i

va(t) = — S .zl 20 iAw -
¢ i=17=
. [fbm_j ’L/\Lj_m.;_i (o) (ZACOt + @m— + ‘Pj"m+i) -

— Gp—j—i Uy COS (i Aeot — @ — Pm—i—i)] -

(45)

Tt can be shown that in eq. (45) only terms of equal
frequency are correlated. The one-sided spectral
density Sgez (¢4f) is then
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K2

I, ; 2 4
Py (2miAf) (46)
2m—1
SSvZ(ZAf)Af Z <um 117 m+z+u7 mugn S 1>
=0
for 105 2m,
0 for ¢>2m and i<<1.

In case of white noise at the demodulator input
it follows with eq. (5)

Ssoa(idf) = “D
(K2/2)(27)%(No/Ps1)? - (¢4f)2 (B — i 4f)
= for 1 <1<2m,
0 for 7>2m and ¢<1.
In the limit Af —0; ¢ Af —f,
Ssp2 (f) = (K2/2) (27)2 (N o/ Pg1)? (48)

[0 — O — BB — )
is obtained.

The spectrum of ve has twice the bandwidth of
the spectrum of v . Furthermore, the spectrum is no
longer quadratic. The difference to a quadratic
shape is, indeed, not so large for baseband fre-
quencies (0 <f= Bg). Within the baseband, the

total second order noise spectrum is
Ssz(f 2TE)2KZ(N0/P51
PR 5 (No/Ps1) (B — )]

The second order signal-to-noise ratio at the output
is

(49)

Psa/Pxo = K2¢ / szg df] . (50)
Assuming
p) =: 27 AF cos (wrt + 1) (51)
it follows that (52)
Pgo __Ei Pg1 AF\2 1 o
Pra 2 NoBa\Bn) | 1 NoBw (B 3\
2 Ps \ Bs 8)

This is a very interesting result: at a given signal
power Pg and noise spectral density Ny at the
input, the output signal-to-noise ratio decreases
with increasing input bandwidth B. This means
that even an ideal ¥M discriminator needs a pre-
ceding preselection filter to show optimal noise
behaviour. This result will be of importance when
comparing it to the results obtained by a phase-
locked FM demodulator.

Eq. (562) shows, moreover, that the output signal-
to-noise ratio decreases directly proportional with
the input signal-to-noise ratio when Pgi/Nj is large
and more than directly proportional when Pgi/Ng
is low. This proves the existence of an FM detection
threshold.

It appears that the mathematical effort to obtain
these (approximating) results is small compared
to the case of an exact solution. Therefore, it can be
expected that the method of estimation functions
could be of benefit even for problems that cannot
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be solved exactly or where the exact solution is too
difficult.

4. A First-Order Phase-Loek-Loop FM Demodulator

One typical problem where the exact method is
not applicable is a first-order phase-lock-loop FM
demodulator. Exact solutions can only be obtained
for the distribution of a phase difference between
the noisy input signal phase and the locally gener-
ated reference signal phase [11]. An exact solution
for the output signal spectrum is not yet available.

It shall be shown that the method of estimation
functions yields excellent results for low-noise
applications. Fig.1 shows a first-order PLL de-
modulator. It should be noted that no limiter is
provided to precede the loop.

M LP
vlt} uyltl

—_ X e X

Un[t)

Fig. 1. First-order phase- 5
lock-loop FM demodulator. ﬁ;é

The demodulator consists of a multiplying
mixer M, a low pass filter LP and a voltage con-
trolled oscillator VCO. With the signal notations
of Fig. 1, the circuitry can be described as follows:

wag (1) = s () (), (53)
o () = flos sin [w0st - kos | un(1)dr], (54)
up () — um (t) * hrp(£) . (55)

kn is a constant of the mixer, kog is the modulation
sensitivity of the oscillator and wogs/27 is its centre
frequency and hyp(t) is the impulse response of the
low-pass filter.

According to egs. (24) to (31), the noisy TM
signal v (¢) can be written as

o(t) = R(t) coslmel + go+ p)].  (56)
Then, with eqs. (53), (54)
Uy (8) = Lhkmdos B (¢) -

{—sin[(we — wos)t + @ (f) — (87)

[4
— kog fup (v)d7 + @c] 4 sin[(we + wos) f +
t

+ @) + kos [ up () dr + @cl}

is obtained. With an appropriate choice of the
limit frequency of the lowpass filter LP follows

up (f) = — Skmilos B(I) -
- sin[(we — wos)t -+ @(f) — (58)
¢
— kos [ up(7)dv + @] -
By introduction of the phase difference
z(f) (we — wog)t +
@ : c 0s) p(t) — (59)

—koSqu(T)dT—l— Pc+ 7,

195
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eq. (58) is reduced to

up (t) = S kmtos B (¢) sin 2 (?) . (60)
Derivating z(f) with respect to the time ¢ and in-
serting eq. (60) yields

E()

() 4+ wp ; sina(t) = @(t) + we — wos . (61)
C
In eq. (61), the abbreviation
Wp 1= %kMk'oS'LALcﬁOS = 2chp (62)

is used. The simultaneous solution of eqs. (61) and
(60) yields the demodulated output signal wp(f)
of a first-order PLL demodulator. It is noteworthy
that eqgs. (60) and (61) include the time dependent
amplitude E(¢) of the noisy input signal: The
amplitude of the input signal is not assumed to be
constant!

A usual way to solve an equation like eq. (61)
is the application of the method of Volterra funec-
tionals [12]. Then a first-order approximation of
eqs. (60) and (61) is

B1(0) + op 1) = ) + we — wos, (63)

R(t)
gy — . @p 20
uyy (£) kow 21 (t). (64)
The solution of egs. (63), (64) is
W = Pr R _op | .
up’ () Foutie exp 4 J R(r)dr (65)
¢ . Wp ¢
[ [ (&) + we — wos] eXp[»—d [ R(z)dr|dé.
c

This solution can be simplified by use of the
method of estimation functions. Therefore, ul})(t)
is expanded at #@=7. Then, the 0-th order estima-
tion function yields the demodulated signal in the
absence of noise:

w
u%%)(t) = k(*)p; exp(— wpt) * (66)

t
(&) + we — wos] exp(wpé) dé.

This is the known result [13]: in a first-order
approximation and in absence of noise, the PLL
demodulator behaves like an ideal FM discrimina-
tor, followed by a first-order low-pass filter with
limit frequency fp = wp/2 «.

Stationary estimation functions of higher order
can be obtained by the marginal condition ¢ (¢) = 0;
we — wos=A82. A first-order estimation function
is then u{y, (f) with

Uy (1) — uph () =01 (t) =

_wp B kdw — AQ

o ”krOsﬂk=2m Wp [0)12) + (kdow — 40)?] ‘
{[wi + A2 (kdw — AQ)] cos (kAwt + g — AQ)
+ wp(kdw — 2480) sin(kAdwt + gp — A2)}.

(67)

Following the methods used in Section 3, the one-
sided spectral density of v1(t) for baseband fre-
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quencies is found to be

(68)

_ No 7 AF 2
Ssal = Koep pt o L [1+( . )J

K = 1[kos (69)

is the demodulation constant of the PLL demod-
ulator.

Eq. (68) shows that the first-order noise spectrum
of the PLL demodulator behaves only in case of
AF =0 like that of an ideal FM discriminator
followed by a low-pass filter.

This outcome cannot be found by usual methods.
It shows that, even with a first-order approxima-
tion, the method of estimation functions provides
interesting results.

It can be shown by a stationary second-order
estimation function that there is a further essential
difference to a circuitry, consisting of an ideal
demodulator and a low-pass filter. With AF =0
the total second order noise spectrum is (within
the baseband)

whereby

Ny 2
(1) — 2 ot .
i L Nofo ( B B —2f )}
[1 -+ 5 Py, arctan 2, -+ arctan 2, .

Two limiting cases have to be considered. If
B £ 2fp, then it follows that

Ny 2 )
Ps; 1+ f2f3
1 Ng
1 e (B — f)] .
Lty (B =)

In this case, the PLL demoduwator works like an
ideal demodulator with low-pass filter, provided
that there is any circuitry which limits the input

bandwidth of the demodulator to B.
If B> 2f,, then

SE(f) = @mpP K> 1)

@ () — No £
D= b TP o)
1 Ng
LEy g

This is, indeed, a very important difference to a
circuitry with ideal demodulator and low-pass
filter: eq. (72) shows that there no input bandpass
is necessary to keep the value of S§(f) at a finite
value.

The order of magnitude of %(No/Psi)wfp shall
be illustrated by an example. FM broadcast systems
are using frequency deviations of at most 75 kHz
and audio frequencies of up to 53 kHz. The allowed
high frequency bandwidth is about B =180 kHz.
Choosing the value f,=115kHz guarantees that
the PLL works within reasonable conditions. Then

_ P
Ps
holds. This means that for input signal-to-noise

ratios of more than 6 dB, the first-order and the
second-order spectrum differ by less than 1 dB!

(73)
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This estimation does not take into account effects
of nonstationarity (clicks ete.).

The comparison of eqs. (71) and (72) yields that
the PLL FM demodulator can be approximated. by
a circuitry, consisting of a bandpass with centre
frequency we/27 and a bandwidth of about =fp,
an ideal FM discriminator, and a first-order low-
pass filter with limit frequency f,. If f, is compar-
able to or even higher than the limit frequency of
the built-in low-pass filter LP (see Fig. 1), then LP
must be taken into account additionally.

T T T T T T T T T 1
il T T jwl
__l_.l S _B*_ - =

1 ! Lot

! Virtual band-  Ideal FM Virtual low- |

| pass fiter  discriminator  pass filter :

L a

Fig. 2. Equivalent model of a first-order PLL FM demodu-
lator.

This circuitry is shown in Fig. 2. It should be
noted that these results were obtained provided
that no limiter was used.

In the circuitry of Fig. 2, f; is an essential param-
eter. Following eq. (62), f, is directly proportional
to the amplitude 4. of the useful signal. Therefore,
the (virtual) bandwidths of the PLL demodulator
are proportional to @.. This “adaptive” behaviour
is the object of a research project at the Lehrstuhl
fiir Hoch- und Hoéchstfrequenztechnik der Univer-
sitét des Saarlandes [14].

More exact results are obtained, if the approxima.-
tion by Volterra functionals is implemented for
higher orders. Figs. 3 and 4 show the computed

05 ,
v //15/
0.4

4f = LIHz 70

. 7+
04

4

0 il
0 2

S S——

& 8 kiz 10

f—

Fig. 3. Computed and measured output signal spectrum

of a first-order PLLFM demodulator; No/Pgi=
(200 kHz)-1.
20
mVZX
16
bo—
“’E’ 0.8
l
04— }
0 || |
0 2 [} b 8 kHz 10

Fig. 4. Computed and measured output signal spectrum
of a first-order PLLFM demodulator; Np/Pg =
(50 kHz)-1.
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spectrum with third-order Volterra expansion and
a stationary first-order estimation function. Sta-
tionarity condition was wgs — we = AF = const.

Parameters in the curves of Figs. 3 and 4 are:
fo=>5.45kHz, f1,=100 Hz, measuring bandwidth
By =30 Hz. The marks (X, +) in the figures show
measured values.

In Fig. 3, Psi/No=200 kHz was choosen. This
corresponds to an input signal-to-noise ratio of
about 10 dB when using a system with AFpax=
4 kHz, fimax=1/Fp. It can be seen that measure-
ments and theoretical curves are in excellent
accordance.

Fig. 4 shows the results with Pg;/N¢= 50 kHz.
This corresponds to an input signal-to-noise ratio
of about 4 dB. Measurements and theoretical curves
are only in good accordance for the stationary case
(AF =0). With modulation (¢=2nAF cos wri;
AF =4 kHz), at low frequencies the measured
results differ considerably from the theoretical
value. This is due to the fact that there are non-
stationary effects (clicks) which cannot be included
by stationary estimation functions.

The measurements were made with an input noise
bandwidth of B=3 MHz. This input noise band-
width is, in fact, very large compared to fp=
5.45 kHz. The accordance of measurements and
theory (in Fig. 3) gives evidence to the statement
that an input bandpass preceding the phaselock
demodulator is in principle not necessary, when fp
is choosen to have a suitable value.

5. Summary

With the method of estimation funections, a
relatively elementary technique is given to evaluate
spectra of nonlinear functions of noisy signals.

The application of this method to a first-order
phaselocked FM demodulator shows that theoretical
and practical results are in excellent agreement
if the suppositions of the approximation are sat-
isfied.

A new result is that the phaselocked IM demodu-
lator behaves like an FM demodulator with a pre-
ceding virtual bandpass filter.
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