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ABSTRACT 
It will be shown in this paper that our models on thermal noise are subject to strong restrictions that 
prevent their application at very high frequencies. It appears therefore that there is a need for a modifi-
cation of our models predicting thermal noise. 

INTRODUCTION 
Thermal noise is a well-known phenomenon in 
physics and electronics engineering. It was first 
reported 1928 by Johnson [1]. Experiments that 
were performed with different types of resistors 
and for frequencies between approximately 300 
Hz and approximately 2 kHz could be well de-
scribed by an assumed noise-power spectral 
density 

( )2JohnsonN kTw p =    , (1) 
where k  is Boltzmann’s constant and T is the 
temperature in K. 

A first explanation was given in the same 
year by Nyquist [2]. Nyquist’s first model pre-
dicted exactly Johnson’s noise power density, 
based on the assumption of equipartition of en-
ergy. 

However, since this model would request in-
finite over-all-power, Nyquist adapted his model 
without giving any proof by following Planck’s 
law of black-body radiation: 
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In 1951, Callen and Welton [3] found a relation-
ship between equilibrium fluctuations in a quan-
tum system and irreversibility. This relationship 
is often referred to as the ”fluctuation-
dissipation-theorem”. Applied to impedances, it 
predicted fluctuations of the current and the 
noise-power spectral density 
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If hω is small as compared to kT, then 
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However, the fluctuation dissipation theorem is 
difficult to interpret for very high frequencies, 
since it seemingly predicts increasing power-

density for increasing frequencies. There were 
passionate discussions concerning this behavior 
that were summarized by Abbott et al [4] or by 
Reggiani et al [5]. (We are not going to repeat 
this discussion here). 

This suggests that there are some restric-
tions or even inaccuracies in Callen’s and Wel-
ton’s model (CW-model) that are not yet ana-
lyzed. This model applies a first-order perturba-
tion approach to a quantum system that is sup-
posed to act as an ”impedance”. Inaccuracies 
could therefore possibly be observed in the 
modeling of the system or in the describing 
equations (i.e. in the Hamiltonian of the system) 
or in the application of the perturbation ap-
proach. 

Therefore, the Hamiltonian used in the CW-
model will be compared in this paper to a more 
specialized version of a Hamiltonian of an “im-
pedance” in the environment of a ”heat reser-
voir” and with an external field. As a conse-
quence, some restrictions to the applicability of 
the model will be recognized. 

CALLEN’S AND WELTON’S 
HAMILTONIAN  

Callen and Welton used in their original paper 
on “Irreversibility and Generalized Noise” [3] 
the following Hamiltonian 

( ) ( ) ( ) ( )0 , , , ,CW CWH H V t Q q p
r… … …a a= +    . (5) 

They assumed V to be a simple function of time, 
Q an operator depending on canonical coordi-
nates and momenta, not on time. From their 
further explanations concerning the application 
to thermal noise, it could be derived that V(t) 
was interpreted as a voltage across an imped-
ance while Q described charge carriers. 

It should be mentioned that this particular 
Hamiltonian was used as a working hypothesis: 
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no evidence was given for the assumption that 
this was indeed a Hamiltonian that could de-
scribe an impedance approximately, let alone 
exactly. 

Therefore, we will derive in the next two 
sections a model of an impedance and a Hamil-
tonian that could be applied to this impedance. 

MODEL OF AN “IMPEDANCE” 
Figure 1 shows the schematic diagram of an 
“impedance” that is in contact with a heat res-
ervoir. Two terminal planes allow for proper 
definition of quantities to be measured, e.g. cur-
rent or modes of electromagnetic waves. 

In order to simplify the system, it is assumed 
that the essential parts of the system can be 
modeled as a sequence of very thin slices cut in 
transverse direction to the z-axis and at a cer-
tain position z. Each slice shall again be cut into 
parallel stripes, the sub-impedances.  
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Fig. 1: Model of an impedance that is in contact to a 

heat reservoir 

Since each slice is cut into many stripes, statisti-
cal average values can be determined for the 
current through the front or back areas of the 
stripes, thus resulting in an expected value of a 
particle current through the front or back areas 
or through the side areas of a slice that is in 
contact to the heat reservoir. 

The entire impedance is thus subdivided into 
a large set of sub-impedances with same prop-
erties. These will be analyzed in the following. 

THE HAMILTONIAN OF A STRIPE 
In this section, the Hamiltonian of a stripe (sub-
impedance) will be described. This description is 
a summary of known results that can be found 
in reference books on quantum electrodynamics 
(see e.g. [6]). 

On a microscopic scale, and in a classical 
approach, the Hamiltonian of one sub-

impedance including influences of the reservoir 
would be in a non-relativistic approach  
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where m

α
 and m r

r&
a a  are the masses and the 

kinetic momenta of the particles. E
r

and B
r

are 
the electric field and the magnetic induction, c is 
the velocity of light in vacuum, ε0 is the permit-
tivity. 

The electromagnetic field is governed by 
Maxwell’s equations and by the Newton-
Lorentz equations of the particles. These equa-
tions are usually decoupled by introduction of a 
vector potential A

r
: 

( ) ( ), ,A r t B r t
r rr r∇× =    , (7) 

and of a scalar potential Φ: 

( ) ( ) ( ), , ,r t A r t E r t
t

r rr r r¶
¶∇Φ = − −    . (8) 

Both potentials are not yet uniquely defined by 
these equations. Using the Coulomb gauge 
transformation 

( ), 0A r t
r r∇⋅ =  (9) 

yields another equation to determine the fields. 
In that case, the potentials must obey the equa-
tions 
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is the charge density and  
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is the (particle) current density. That means: 
there will be a non-vanishing vector potential for 
a non-vanishing current density. 

For a more lucid analysis of the effects of 
impressed fields and currents, vector potential 
and scalar potential will be split into a sum of 
components of the system (index s) and of ex-
ternal quantities (index e): 

( ) ( ) ( ), , ,e sA r t A r t A r t
r r rr r r= +    , (14) 

( ) ( ) ( ), , ,e sr t r t r t
r r rΦ = Φ +Φ    . (15) 
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The external fields must obey the equations 

0

1
e e eA

r re∆Φ +∆⋅ = −    , (16) 
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   . (17) 
Again, current density and vector potential are 
strongly correlated. 

Another gauge transformation (not necessar-
ily a Coulomb gauge transformation) can be 
used to decouple the equations. 

The Hamiltonian can then be expressed as  
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being the canonically conjugate momenta and 
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 (20) 
being the Coulomb interaction energy between 
pairs of particles plus the Coulomb self energy. 

Carrying on to a quantum-theoretical analy-
sis, the classical total energy is used to gain the 
hamiltonian operator H, that formally looks like 
the Hamiltonian given above, apart from spin-
effects. It relates the (quantum-theoretical 
multi-particle) state vector ( )ty  of the system 

and its time derivative by Schrödinger’s equa-
tion: 

( ) ( )d
j t H t

d t
h y y=    . (21) 

However, since in classical systems the spin of 
the particles is not taken into consideration, the 
Hamiltonian has to be completed: 
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where g
α
 is the Landé-factor for the particle and 

S
r

a  the spin-operator associated to the particle 

with number α. 
If the external fields vanish (i.e. if the influ-

ence of the heat reservoir and the surrounding 
sub-impedances vanish), then the Hamiltonian is 
called undisturbed. It will be named H0. It then 
follows 
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This Hamiltonian is certainly different from that 
given by Callen and Welton. The perturbation 
part can not be separated into a product of a 
time-function and a time-invariant operator. 

RESTRICTIONS 
In order to simplify the model, we will now in-
troduce some restrictions. 

In the appendix of [7] it is shown, that the in-
teraction between spins and magnetic induction 
can be neglected against the first-order particle-
field-interactions for low-energy photons, where 
the momentum of the photon is small compared 
with the momentum of the particles. This ap-
plies for example for the interaction between 
bound electrons and microwave photons. The 
influence of the spin-operator to the Hamiltonian 
will therefore no longer be considered. 

In the same way, the second-order particle -
field-interactions will be neglected against the 
first-order particle -field-interactions, since it will 
be supposed that radiation intensities are suffi-
ciently low. Furthermore, interactions between 
external and internal fields will be neglected. 

With these restrictions, the Hamiltonian of a 
sub-impedance can be expressed as 
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If electromagnetic wave-propagation in the 
inner of the impedance could be neglected, the 
last sum term in equation (24) could also be 
neglected, leading to 

( ) ( )0
1

, ,e eH H q r t p A r t
m

rr r r
a a a a

a a

  = + Φ − ⋅  
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For sufficiently small absolute values of the 
external vector potential this Hamiltonian could 
again be simplified to result in 

( )0 ,eH H q r t
r

a a
a

= + Φ∑    . (26) 

Because of its importance for the following 
argumentation, the assumed restrictions are 
summarized: 

• momentum of photon is small compared 
with momentum of particles, 

• radiation intensities are sufficiently low, 
• electromagnetic wave-propagation in the 

interior of the impedance is negligible, 
• external vector potential negligible, i.e. 

sufficiently small current or frequency. 
It is furthermore important to have in mind that 
the external scalar and vector potential mediate 
not only power and particle flow in z-direction 
but also in a direction perpendicular to z. They 
are therefore also responsible for the heat trans-
port from and to the reservoir and the surround-
ing sub-impedances. Note thus that even for 
low frequencies, differences in Φe must not be 
interpreted as voltage across the sub-
impedance. 

COMPARISON TO THE CW-MODEL 
Direct comparison of the simplified Hamiltonian 
following equation (26) to Callen’s and Welton’s 
Hamiltonian shows that the latter can only be a 
still more simplified version of the system’s 
Hamiltonian. 

Indeed, if it is assumed that  
( ) ( ) ( ) ( ),, ,e eHRr t V t f z r t
r rΦ = +Φ    , (27) 

where the last sum term takes into account the 
influence of the heat reservoir, then we can 
write 

( ) ( ) ( )0 , ,eHRH H V t Q r q r t
r r
a a a

a
= + + Φ∑  (28) 

with 

( ) ( )Q r q f z
r
a a a

a
= ∑    . (29) 

Callen and Welton interpreted VQ as a pertur-
bation to the undisturbed Hamiltonian H0. Appli-
cation of a perturbation calculation led to a tran-
sition probability for bringing the system into a 
higher state of energy. The latter must then be 
balanced by heat transport to the heat reservoir. 
Applied to an ensemble of sub-impedances, this 
resulted finally in their formula (3). 

CONCLUSIONS 

If the restrictions are considered that must be 
met for a sensible application of Callen’s and 
Welton’s model, then it is obvious that we 
should not expect the CW-formula to apply 
for radiation dominated processes or to 
processes where substantial currents flow. 

That could resolve some discrepancies that 
are described in the literature. Koch et al. [8] 
for instance seem to have found an experimen-
tal verification of Callen’s and Welton’s model 
for a resistively shunted Josephson junction and 
for frequencies up to more than 150 GHz. It 
seems that this experiment was particle domi-
nated. This is opposed to other experiments that 
were reported by Gardiner [9] who writes that 
the increasing part of the spectrum could not be 
measured by means involving the absorption of 
photons from a radiation field. Obviously the 
latter experiments were radiation dominated. 

What is still missing is a model that yields the 
noise power spectral density as well in the par-
ticle dominated as in the radiation dominated 
case. It appears thus that our models on thermal 
noise must be revised. 
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