Mixed integration method for the evaluation of the
reaction integrals using the spectral domain method

D.Pilz and W.Menzel

Abstract: The spectral domain approach is frequently used for the full-wave analysis of planar
structures. Applying Galerkin’s method, infinite, double integrals have to be solved. The paper deals
with an effective algorithm for solving these integrals using a mixed integration method.

1 Introduction

The spectral domain method (SDM) algorithm is widely
used for the analysis of planar microwave circuits, trans-
mission line characteristics and antennas. The electromag-
netic fields and currents in one or more layers are
transformed from the space domain via Fourier transfor-
mation into the spectral domain. Thus the convolutional
integrals of the space domain are transformed into simple
multiplications in the spectral domain, Additionally, the
Green’s functions describing the relation between the elec-
tromagnetic fields and the related electric or magnetic cur-
rent, can easily be obtained by using the immittance
approach [1].

In the spectral domain approach the unknown currents
are usually expanded in a series of known basis functions
with unknown coefficients. The scalar product of the test
and basis functions, together with the Green’s function
used in this procedure, leads to two-dimensional integrals,
here designated as reaction integrals. In a shielded or peri-
odic structure, the integral can be reduced to a two-dimen-
sional sum using Floquet’s theorem. However, in an open
structure the two-dimensional infinite integrals including
one or more pole rings have to be solved numerically. For
the case of small distances between different cells of test
and basis functions, this can be done by a simple numerical
quadrature in polar co-ordinates [2]. To improve the
numerical efficiency the asymptotic behaviour of the inte-
grand for greater spectral co-ordinates can be used to eval-
uate the outer part of the integral analytically [3-5].

However, if the origins of the test and basis functions are
not located close 1o each other, the integrals show a highly
oscillating behaviour. This leads to severe difficulties in
finding an accurate solution. This holds especially for the
subdomain basis function or larger antenna arrays, where
numerous equivalent integrals have to be solved.

The spatial integral equation technique may be used for
this type of problem, but then the Green’s functions have
to be determined in the space domain, and several convolu-
tion integrals have to be solved [4].
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In this paper, a mixed integration method for an efficient
algorithm for solving the reaction integral in the spectral
domain 1s presented. The integrand is partly evaluated in
Cartesian co-ordinates, wherever possible. After a proper
interpolation for the Green's function and a separation in
the x- and and y-directions of the current functions, the
highly oscillating part is integrated by Filon’s method [6].
This leads to a drastic improvement in the convergence, as
it will be shown in the results. The remaining part of the
integral, the part close to the ring of surface wave poles, is
evaluated in a conventional way using the residual theo-
ren,
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Fig.1  Conflguration of structure under investigation
2 The standard spectral domain approach

The structure under investigation is shown in Fig. 1. For a
planar, infinite structure the related electric fields in the
spectral domain are obtained as

“ 4 e . , N

GJ'J"'GM'M:Etat—EinC (1)
G ; and G M are dyadic Green’s fungtion, J and M are
the electric and magnetic currents, £ ,, and E ,, are the
total and the incident electric fields, respectively. For sim-
plification, only electric currents in the y-direction are con-
sidered here. Then eqn. 1 reduces to

Zyy - Jy = Eiory — Fineyy (2)
The next step is to expand J,, in a series of basis functions
N
Jy = Z Cnithn 3)
n=1

The application of Galerkin’s procedure with respect to
eqn. 2 leads to an inhomogenous matrix equation for the
unknown coefficients ¢,
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Eaed = -

Ac=5h (4)
The elements in the matrix, the reaction integrals, can be
written as

Aun = [[ 2, 5)
2m oo

- f / Lyt b dindiy (6)
0 0

using the identities k, = v(k2 + k ﬁ') and k,, = arctan(k /k,);
k, and k,, are wavenumbers in polar co-ordinates. 1 can be
decomposed into one term ¢, including the shape of the
current densities only, and another term, which includes the
spacing between the origins of the expansion functions,
exp{flk,Ax + k,Ay)}. Eqn. 7 summarises the entire integral

Ayp = / / Zyy @ pne? Bebo TR B dp ik, (7)

where the term Z,,, includes the surface wave poles and
can be separated into k, and k&, The term ¢,¢, can be sep-
arated into k, and k,, and the exponential term is highly
oscillating for increasing Ax, Ay.

3 Typical characteristics of the integrand

3.1 Green’s function

The tegrand is a product of two different types of func-
tions. Using the immittance approach [1], the Green’s func-
tion Z,, is derived by separating clectromagnetic fields and
currents into TM, and TE, components. The respective
Green’s functions Z, and Z,, then have the general form

Se h(kz 12)

o = M (e ]

P ) flker) (8)
where k,; = V(k2 — &, /) is the wavenumber in the z-direc-
tion in the ith layer, and k, is the spectral domain which
varies in the radial direction. The function p, contains at
least one zero, representing the surface wave pole. All zeros
are located in the range ky < k, < kg. Ve, where Vg, is the
largest dielectric constant, Fig. 2 shows a typical example
for Z;, and Z, of a single layer grounded substrate.
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Fig.2 Absolute values of Green's fimetion for TM,- and TE-waves for a sin-
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The relationship between y-directed currents and electric
fields can be expressed as

Zyy = — co8(ky) Zp (k) + sin(ky) 2o (ke) = Flke, ko)
(9)
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Hence, Z,, is a function, which can be decomposed into
the sum of two products each separable in polar co-ordi-
nates. However, o separation in Cartesian co-ordinates is
not possible.

3.2 Basis functions

The second term of eqn. 7 consists of the product of a test
and a basis tunction without the representation of the dis-
tance between the origins of the two functions. A larpe
group of basis functions is composed of the product of two
independent one-dimensional functions, which separately
describe the dependencies of the x- and y-directions. In the
case of subdomain functions, thesc are for example the
rooftop functions or other derivatives of B-splines or the
pentahedral functions {4]. A similar decomposition can be
found for cntire domain functions for dipoles, crosses,
square loops or Jerusalem crosses. These can be written as

¢1b(kw7ky) = Qua (km)¢uy(ky) (10)

The Fourier transform of the current distributions always
cxtends to infinity as the distribution in the space domain is
limited. The behaviour of the transform is determined by
the specific form of the current distribution, but is charac-
terised in any realistic case by a strong oscillation.

3.3 Exponential term
A laterat displacement of test and basis lunction in the spa-
tial domain leads to an cxponential term in the spectral
domain, which represents oscillating behaviour, as can be
seen by Buler’s theorem: exp(jx) = cos(x) + j sin(x). For
greater distances, the oscillation become faster, resulting in
a higher number of necessary sampling points for numeri-
cal integration. Hence, especially for greater distances the
minimum number of sampling points is determined by the
exponential term, if not a special treatment of the oscillat-
ing behaviour is done.

Egn. 12 emphasises the different separable functions of
the integral kernel of eqn. 7, using additionally ¢,, = ¢, ¢,

Gundkx) = ¢,k and (Puny(k )= ¢m:y(_k )
I{u-n - Zyy (szqbﬂej(kmAm_}mkyAy)
= Zyylkr ks)  Ouna(ka)cos{k,Az) (11)

Duny(ky) cos(k, Ay} (12)

4  Integration further away from the pole rings

At a greater distance (rom the pole ring, the Green’s func-
tion is rather smooth in comparison to the othet terms of
the product. Thus, a product integration method [7] can be
used for evaluating the integral. First the integral arca is
divided in several rectangular parts

A = 4 f f Kndhydk,
[I]

o (AR, (kH1)AK,

iy
=4 Z Z j f Koyndkdky

=0 k=0 iAk, kisky,
(13)

Then Z,, is interpolated by a two-dimensional polynomial
of second order

Zyy(ke, by) 5 ai + bipka + cirky + digkoky  (14)

(for ay, b, ¢4, dy see the Appendix (Section 9)). Over one
cell Ak, x Ak, the integrand of eqn. 13 can be wrilten as
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I K

Aun =43 > {awll Iy + bin I I,
=0 k=0
+CikIg’cing + dikI;’,ifgk} (15)
with
{(i+1}Aky
= / Bune () cOS(kuAR)dEs (16
1Ak,
(i) Ak,
= f o uma (ko) cO8 (ko Az)dke  (17)
1Ak,

and similarly for Iy and I},

The quadrature areas can be enlarged with the distance
to the ring of poles. As can be seen from Fig, 3, it is useful
to enlarge the outer cells by a whole-numbered multiplier
to avoid difficulties at the boundaries between two regions.
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Fig.3  Possible division of integration area into areas of different sizes

Now the two-dimensional integral is reduced into a dou-
ble sum over one-dimensional integrals. Only the rather
smooth Green’s function is approximated by a polynomial,
The one-dimensional integrals can be evaluated numerically
due to their rapidly varying behaviour, As it can be seen
from eqn. 15, only X integrals for the &, -direction and L
integrals for the k,-direction have to be solved.

The one-dlmenswnal integrals Zy, 1%, Iy, I}, can be
evaluated partly analytically by using a ‘F1lon-trapezmdd.1’
rule [6, 7). The integrals are separated into several, equidis-
tant sections. Then only the function ¢,,, is approximated
by a polynomial for the nemerical quadrature. The product
of the polynomial and the remaining sinusoidal function is
evaluated analytically. Using this procedure, it is possible to
deal even with rapidly oscillating integrands, resulting in a
convergence, which is almost independent of the oscillating
period. The ‘Filon-trapezoidal’ rule is summarised in more
detail in the Appendix (Section 9.2),

5 Integration in the vicinity of the poles

Eqn. 7 consists of at ieast one pole in k,. Standard integra-
tion techniques for this part lead to severe numerical prob-
lems. To avoid numerical difficulties, the residual theorem
can be used.

The radial part is integrated first. Hence, A4, of eqn. 7

2le

can be written as
/2 ke /2

un—4//Kunkdkdk A]Idk (18)
kru

If the poles &,, = p, can be determined exactly, it s possible
to divide the radial part into 2 + 1 intervals

kp1
Ir = /KundekT
Rep
po—6 i—g—q P18
- f Kunkedlir + 3
kro =l phs
_q Pits

/ Kunkydky + 2 Kounkydk,

pIté -

Konkedk.,

S (19)

which reduces to

/ Kankodky + f Ko kb,

po+4
po+d
+ f Konkodk, (20)
po—0
if there is only one pole,

The third term can be evaluated analytically from the
residual theorem. If & is small enough (8 < k¢/10000 in
practice), then

pi+3
lim f =— Res (Kun) (21)
§—0 ke=p:
pi—4
is valid. The negative sign in eqn. 21 has to be used,
because the integration path is in the mathematically nega-
tive direction.

Fig. 4 shows the principle of the quadrature close to the
pole ring. For the boundary between the regions of polar
and Cartesian quadrature, it is useful to implement triangu-
lar areas, which can be developed similarly to the rectangu-
lar ones cutlined previously.
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Fig.4 Detail of quadrature area
Quadrature has o be done in polar co-ordinates when close to the poles
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6 Results

6.1 Convergence
In this Section, the proposed method i3 compared to a
standard numerical integration, For these computations,
entire domain functions for a rectangular current distribu-
tion are used. The functions consist of sinusoidal functions
including an edge term [1]. The rectangular structures are
1.5mm x 1,5mm. A substrate with a height of 0.76mm and
a dielectric constant of 2.35 is used. The operating fre-
quency is 20GHz. For these types of functions, the outer
regions with slow convergency are purely imaginary. Thus
only the imaginary part is shown here.

Three different sizes of integration arcas (Fig. 3) were
used. For comparison, a polar quadrature has been imple-
mented.
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Fig.5 Convergence of the imaginary part of the reaction integral
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In Figs. 5-7 the behaviour of the reaction infegrals is
shown as a function of the number of summations, in com-
parison to a standard trapezoidal two-dimensional polar
quadrature procedure. In the standard procedure N is the
number of summations terms, whereas in the method pro-
posed here, N is the number of sums of eqn. 15. Addition-
ally, for solving the reaction integral by our method, the
integrals of eqns. 16 and 17 have to be solved. However,
the numerical effort for the evaluation of these integrals
can be neglected, since they are only one-dimensional. The
identical number of necessary summations in the vicinity of
the pole ring is not considered for both methods. The dis-
tance to the pole ring is 0.1 k.

Using the proposed mixed integration method, the
number of summations can be decreased considerably even
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in the case of the self-coupling term, (Ax = Ay = 0, Fig. 5).
Identical accuracy is achieved with only one-tenth of the
summations for the standard integration method, which
leads to a saving of computation time of about the same
order.
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Fig.7 Conver ggnce of the imaginary port of the reaction integral
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In Figs. 6 and 7 the origins of the test and basis functions
are at a distance of about half of the freespace wavelength
and about two wavelengths, respectively. As the distance
increases, the convergence of the mixed integration method
improves dramatically in comparison with the standard
integration method, Even for only a very small number of
summations, the mixed integration methed provides results
very close to the actual solution. For any other method,
which is not evaluating the sinusoidal functions analyti-
cally, at least a condition similar to the Nyquist theorem
has to be fulfilled, Therefore, reasonable results can only be
expected for a very large number of summations, resulting
in considerable numerical effort.
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6.2 Example

As a very complex example for the application of the
mixed integration method, the simulated and measured
results of the farfield of a planar offset reflect array [8] are
shown in Fig. 8. The reflectarray consists of 1117 rectangu-
lar structures. Using entire domain function with one
expansion term for each patch and considering the mutual
coupling of structures up to a distance of 44, about
300000 integrals have to be solved numerically. With the
method presented here, a computation time of less than 10
min on an HP 7000 could be achieved.
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7  Conclusions

An efficient method for evaluating the reaction integrals for
planar structures has been presented. The method is based
on a mixed integration method, evaluating segments in
Cartesian and polar co-ordinates. The alporithm can be
used for current distributions, which are separable parallel
to Cartesian co-ordinates. Especially for larger distances of
test and basis functions the convergency is significantly bet-
ter than that of the standard procedure, resulting in a high
efficiency for the analysis of structures, extending even to
several wavelengths.
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9 Appendix

9.1 Approximation of the Green’s function

To separate the integrand of eqn. 7 into two independent
functions, the Green’s function has to be approximated by
a two-dimensional polynomial (eqn. 14). The function is
interpolated to match the corners of one rectangle. The for-
mulation for the coefficients is done best in matrix form

lo o

T = E”Lfik

with
agp Flkzi, byr)
I T 7| Flhaiykyrga)
YT fi = Flhaipr, kyi)
. i FlEziz1, byngt)
m =
kgitthybrt  —FReiibyr  —Foikyrrr  Baikyn
~kypr1 kyk Eykr1 —kyx
"kziqu ka:z-{—L km‘ “km'é
1 -1 -1 1

t = kaskypr — kaikyrgr — Koirrkygr + ket kynys

9.2 The Filon rule

For an integrand consisting of a product of two functions,
one of which is an oscillating term of a known period, the
Filon rule can be used. Only the term, which is not oscillat-
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ing, is approximated by a polynomial for the sampling dis-
tance. Here, the Filon rule can be applied as follows: 1,; can
be written with eqn. 16

(1) Aky
I, = / 08(ko AL)buns (ha)dlbe  (22)
Ak
The interval is separated into several, equidistant sections
iA ka4 (nt1)k
cos{Axky Y puns (ks )dE, (23)

N

=2,
=0 Ak,+nh
On each section the function ¢,,(k,} is interpolated by a
polynomial of second order g(k,) (Fig. 9). Then it is solved
analytically for each sampling distance. The procedure
results in the following formula for & sampling points:

1
I _ . )
oim m{%( cos; —Axh sing + coso)
N
+ Z ¢n (2 COSp — COSp— — COBpy1)
n=1

+ ¢p(cosy +Azxhsiny — COSN—l)} (24)

With cos, = cos {Ax{nhk, + iAk)} and sin, = sin {Ax(nhk,
+ iAk,)}, respectively.

~ unx ) ."IE’§ (o)

ik, +nh Ky ik +(N+1)h

Fig.9  Typical representation of (k) cos(Axk,) and an interpolation func-
tion: in & single interval
g(k,) is a second-order polynomial

I*. can be solved similar to /%
1
Ih = {¢50 [(kvo — R)Ameo — ka1 Acy

T Azdh
— (Az2hkyo + 2)s0 + 251}

N—-1
Y [~ ka(ne1) Azny + 2kanAc,
n=1

— km(n+1)ACn+1 + 2851 — 48, + 28n+1]
+ ¢ [ = kew-1Azey 1 + (2 + h)Azcy
+ (A hkyy — sy + 25N71}}

The integrals for the y-direction can be similarly formu-
lated.
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