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Abstract — In this paper a novel detector structure for
an automatically tuned filter that is well suited for application
at microwave frequencies is proposed. It can be used in a
master-slave structure where the response of a master filter
at a reference frequency is used to derive a control signal
to steer a slave filter in the signal path. The control loop
is analyzed theoretically and the result is compared to a
measurement.
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I. INTRODUCTION

The characteristics of analog filters are vulnerable to
fabrication tolerances and temperature drift. Automatic
frequency control using the popular master-slave approach
is the most feasible solution to control these characteristics
[1]. It uses a master device that is embedded in a control
loop to generate the tuning signal for the slave Voltage
Controlled Filter (VCF) in the signal path (cp. Fig. ). A
good matching between master and slave is essential for
a precise operation.

For microwave filters, this problem has been solved in
[2], [3] by using a typical phase locked loop based on a
voltage controlled oscillator matched to the slave filter.

Another control scheme that uses identical filters for
master and slave was proposed in [4] and analyzed in
detail in [S]. It utilizes a test signal to measure either the
magnitude response (Magnitude Controlled Filter, MCF)
or the phase response (Phase Controlled Filter, PCF) of
the filter at a reference frequency. The analysis showed that
the relative simple magnitude sensitive detector is not well
suited because the system might hang up in an undesired
operating point while a phase sensitive detector showed
good performance at the price of higher complexity due
to the necessary mixer.

In this paper a detector structure is presented and ana-

lyzed that shows a good performance without the need for
a mixer.
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Fig. 1. Principle structure of the control loop.

II. THEORETICAL ANALYSIS
A. Analysis method

The structure of an automatically tuned filter following
the master—slave principle is shown in Fig. [ It was
analyzed in detail in [5]. Here, only the most important
results will be given briefly.

The sinusoidal reference signal w,(t) = i, cos(w,t)
with angular frequency w, is applied to the master filter
as well as to a detector. The behavior of the master
filter with center angular frequency wq is described by
the transfer function H (p;wp). A second-order band pass
transfer function will be used throughout the analysis:
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with H being the gain at center frequency, Qo = “0/Aw,
and Awg (in rdf) the angular frequency bandwidth at
—3dB. The relation between the center angular frequency
and the tuning voltage is assumed to be linear for the
moment. It is given by wy(t) = woo + kfuo(t) with
the VCF conversion factor &y (in rd/v) and the quiescent
angular frequency wo o .

The output signal of the concatenation of the power
splitter, the master filter and the detector is described by

a function ug(t) = g(wp,wo,?,) which comprises the




nonlinearity of the filter response as well as the behavior
of the detector.

The Control Filter (CF) in the feedback path is typically
a low pass filter together with an amplifier. In the analysis
it is represented by its impulse response hcg(t) or its
Laplace transform, the transfer function Hcg(p). Thus
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with ugo(t) considering settling effects due to initial
conditions in the control filter.
The control system adjusts the center angular frequency

wq of the filter to the reference angular frequency w,.. Its
behavior is described by the integral equation:

t+0
0= |
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+ wo,0 + ]ff’dop(t) .

Provided that the angular frequency and the amplitude
of the reference signal are constant, the center angular
frequency of the VCF will settle at a constant value. In
terms of the system equation (J) this is equivalent to a
steady-state solution. These stationary solutions are called
Operating Points (OP). The conditional equation for the
OP might be derived from () for (w;, wo, 4,) = const.:
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Hcr(0) is the DC-gain of the control filter. Usually, the
limit of the control-filter transient-term tends to zero. For
the stability analysis, the nonlinear function g() of the
system is expanded into a linear Taylor series at the OP:

g(w’l'? wo, '&7) ~ Ud,0 + deO + KT'AWT (5)
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Variations of the input amplitude 4, are not taken into
account here.

The integral equation is linearized, Laplace transformed
and rewritten as:

K,
wolp) = <0+ L Hu(p)Awn(p) )
with
Hy (p) = 1 KaHce(?) (10)
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to describe the system behavior for small disturbances
from the OP. The well-known methods of system theory
might be used to analyze the stability of each OP [6] that
is determined by the stability of Hj (p) for steady-state
input signals.

B. Analysis of the detector

The novel detector structure is depicted in Fig. P. It
consists of two tunable master filters (1 and 2) that are
detuned compared to the slave by voltages w1, u.2. The
power of the filtered reference signals is converted to pro-
portional DC signals that are subtracted. For a linear tuning
characteristic of the filters the detuning is proportional to
the offset voltages:

Y
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Fig. B exemplifies the principle.
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Fig. 2. Structure of the analyzed circuit. The slave filter is not
shown. The nonlinear blocks represent power detectors.
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Fig. 3. Magnitude response of the detuned filters and resulting

detector characteristic. The passband of the slave filter is around
2.5GHz. Parameters: fo = «“ofon, fr = wrfr = 2.5GHz,
Hy = 0.66, Qo = 10, wo,0 = 2m-2.25GHz, kj = 1.3-10%rd/y,
kpt2 = 62mV, uep = —ueq = 04V, H,(jwr,wo) =
H(_]IWMWO + We,u) .



The arrangement is similar to a balanced slope discrim-
inator [7] that is used for the demodulation of frequency
modulated signals with the difference that the input signal
is at constant frequency here while the center frequencies
of the filters are variable.

The characteristic of this detector is:
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= k:paf(|H(jwr,wo + we1)|* = |H (jwr, wo + w572)\2)
ka2 H2
= L 3 (13)
1+Q% (wo—kwal_ Wy )

Wr wo + We1

2772
kptiz Hy

5 -
1+Q(2)<w0+w52_ Wy >

Wr wo + We2

kp is a proportionality constant of the power detectors.
If the control filter has integrating behavior:

A
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the control loop will settle in one of the zero crossings of
the characteristic (eq. f). For the practically relevant case
of a small detuning (w, > |we 1,62 |) the only solution of
interest is:

wo =35 (—wsl — Wez + \/4%% + (we1 — W52)2> - (5

It is remarkable that if the frequency offset is chosen
symmetrically around wy (i.e. w.1 = —we2) the zero is not
located at reference but there remains a frequency offset:

wp = /w2 +w?; .

This is because the amplitude response of the filter is not
symmetrical with respect to the center frequency. However,
the error is relative small: Assume the two master filters
are detuned by the 3 dB bandwidth:

(16)
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the center frequency is:
1 r
Wo = Wy ~ 2 for Qo > 1. (18)
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The relative error with respect to the 3 dB bandwidth is
then approximately:
wo—wr 1
wsep  8Qo
E.g. for Qp = 10 the relative error is only 1.25% of the
3 dB bandwidth.
The stability of the linearized system is determined by
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the pole of the transfer function (eq. [[Q):

krKqA
Hp(p) = Pk KeA-
It is located in the left half of the complex plane if
ky KgA < 0. The factor K, describes the slope of the
characteristic g() in the operating point (eq. f); its sign is
independent from the reference frequency. Hence the sign
of the product k¢ A can be chosen in the design to fulfill
the stability criterion in the whole range of operation.

(20)

C. Nonlinear tuning characteristic

The proposed analysis might be extended to a system
where the relation between the control voltage 1 and the
center frequency wqg of the filter follows a (monotonous)
nonlinear function:

wo = v(ug) . (21)

This leads to a stretching of the curves along the fj-axis
in Fig. B. Additionally the possible tuning range will be
limited to a certain band with a realistic filter, but the
principle shape of the characteristic will not change.

For the analysis the measured tuning characteristic of a
filter was approximated by a square root function:

1
wo = v(ug) =27 - 109g (co —|—c“/1<?> )

The amplitude response of the filters as well as the re-
sulting detector characteristic are shown in Fig. fl. Around
fo = 2.5 GHz the same detuning between the master filters
is achieved as in the linear case. For higher frequencies it
is reduced due to the flattening of the square root function.
This leads to a reduction of the detector output signal
compared to the linear case. Below 2.35 GHz the tuning
range of one filter is exceeded.

(22)
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Fig. 4. Magnitude response of the detuned filters and resulting
detector characteristic for a nonlinear tuning characteristic. The
x-axis is converted to the corresponding center frequency of the
slave. Parameters: fo = «o/or, fr = wrfor = 2.5GHz, Hy =
0.66, Qo = 10, co = 2.1561, ¢1 = 0.3392, kpa2 = 62mV,
Ue,2 = —Ue,1 = 0.4V, Hy(jwr,uo) = H(jwr, v(uo + ue,w)) .
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Fig. 5. Comparison of the relative frequency error between
the measurement and the analytical results using a linear and a
square root approximation for the tuning characteristic.

The analysis is carried out as described before. As
the equation for the operating points can not be solved
analytically due to the additional nonlinearity, it was solved
using the computer algebra system Maple 8 [8] for a given
set of parameters. The result is shown in Fig. §. This
improved analysis predicts a larger frequency error than
the analysis using a linearized characteristic but the error
is still relative small compared to the 3 dB bandwidth. The
stability analysis yields the same result as before: there is
only one stable OP.

III. MEASUREMENTS

A system was implemented to validate the analytical
results. The filters were built up as first order parallel
coupled filters with a varactor diode in the middle of the
resonator using microstrip technology.

The filters are tunable from 2.2 GHz to 3 GHz. They
have a quality factor of )9 = 10 and —3.6 dB damping in
the passband at 2.5 GHz. The tuning characteristic of both
filters showed a deviation of 20 MHz at maximum, which
is less than 10% of the 3 dB bandwidth.

The parameter k,0? = 62mV that was used in the
previous analysis was derived from the realized system
at an input power level of —4dBm with f, = 2.5GHz
and Ue,1 = —Ug2 = 04V.

The power detectors were built up using zero bias
schottky diodes and a transmission line matching network.
The integrator in the control filter was designed to have
a unity gain crossover frequency of 15 MHz. It was im-
plemented using operational amplifiers together with the
summation network for the offset adjustment.

Fig. § shows the relative frequency error:
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of the measurement together with the results of the theo-

retical analyzes. Obviously, the nonlinear model predicts
the system’s behavior much better than the analysis with

£ (23)

a linearized tuning characteristic. In the range of roughly
2.3GHz to 2.95GHz, the relative frequency error of the
controlled master filter is below 0.6% with respect to the
reference frequency. This is approximately 6% of the 3 dB
bandwidth of the filter and it can be regarded as sufficient
for most applications.

An important parameter in the design of the detector is
the detuning between the two master filters. A trade-off is
necessary between different aspects: For a small detuning
the output voltage is relative small which makes it more
sensitive to noise. On the other hand both filters operate
in the same region of the nonlinear tuning characteristic
which leads to a smaller static frequency error. For a larger
offset, the detector is less sensitive to tolerances between
the master filters but the region of operation is reduced as
one of the filters reaches the border of the tunable range
earlier.

IV. CONCLUSION

In this paper an improved magnitude sensitive detector
for an automatic frequency control system for tunable
filters was analyzed. It showed a good performance with-
out the need for a mixer. Measurements for a filter at
microwave frequencies were presented that confirm the
theoretical result.
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