NOVEL PLANAR TRAVELING WAVE ANTENNA WITH OMNIDIRECTIONAL RADIATION CHARACTERISTICS

Radiation Pattern

• side lobes lower than -13 dB @ 24 GHz

• less than 1 dB rippel in the azimut (!)

• crosspolarization level better than -20 dB

• 16.5° 3dB-beam-width in elevation

Ralf Leberer and Wolfgang Menzel

University of Ulm, Dept. of Microwave Techniques, Albert-Einstein-Allee 41, 89081 Ulm, Germany

Point-to-Multipoint Antenna

- design frequency 24 GHz
- setup can also be used to design antennas for frequencies up to 60 GHz and more
- excellent omnidirectional azimuth coverage
- narrow beam width in elevation
- potentially low cost
- vertical polarization

Antenna Design

- triplate waveguide with fundamental TEM-mode
- symmetrical setup to minimize excitation of parallel-plate-modes
- symmetrical setup to guarantee symmetrical radiation pattern
- radiation through slots in upper and lower ground planes
- simple tube radome

Amplitude of the six-element-array (amplitude taper with max. at center slots)

• 6°/GHz beam panning

Phase of the six-element-array (slots nearly in phase at 24 GHz)

ground plane

SMA

inner conductor

angle in degrees

Elevation farfield pattern at diff.

frequencies

azimuth —

3D-view of normalized radiation pattern **Cross-Polarization**

Co-Polarization

3D-view of copolarization radiation pattern

normalized to maximum of the copolarization.

Single Radiating Element

- symmetric slot in upper and lower ground plane
- matching structure with inner conductor to reduce reflections
- radiation-transmission-ratio can be controlled with slot width

Structure of a single slot pair

Radiation efficiency of a matched single slot pair over slot width (ε_r =2.33, h=0.79 mm, $w_{\text{metal}} = w_{\text{slot}} + 200 \mu \text{m}, w_{\text{inner}} = 0.5 \text{ mm}, l_{\text{slot}} = 3 \text{ mm})$

ground plane substrate

Coaxial-to-Triplate-Transition

- standard sma-coaxial-connector
- simple contactless mounting possible (capacitive coupling)

Terminating Radiating Element (100%-Radiator)

- · center conductor stub
- · matching only with stub length
- · good bandwidth

Effects of Geometry on Bandwidth (return loss)

- width of the center conductor has low effect on bandwidth
- increasing bandwidth with increasing substrate height
- smaller ground plane width increases bandwidth
- significant increase of bandwidth with inreasing slot length

Effects of Geometry on Radiation Pattern

