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Abstract— Investigations on the effects of non-ideal signal sweep coupler  antenna
sources on system performance of short and medium control
range automotive FM-CW radar sensors are presented. @L VCO
The investigations have been carried out with a specially

of the time domain IF signal of a homodyne radar scan
with multiple targets taking into account spectral noise, RX IF
sweep nonlinearities of a synthesized signal source, and LO

leakage. After a short discussion of the special problems Fig. 1. Simplified block diagram of the signal generation 4G Hz
in FM-CW radars for short and medium range automotive radar sensor.

sensors, an overview is given on the model's theory and

implementation. To verify the simulation model, exemplary

results are compared with data measured by an experimen- target dynamic range. In a coherent FM-CW sensor with

tal sensor setup. The model is then applied to the particular : : . A
problem of finding the optimum control bandwidth for the a synthesized signal source as depicted in Fig. 1, there

synthesized signal source of a 24 GHz FM-CW sensor. is some margin to influence spectral noise by the choice
of the PLL control bandwidth and its natural frequency,

respectively. However, with low control bandwidths, the
PLL can not follow fast frequency ramps anymore, caus-
Driven by the demands of the automotive industryng distortions of sweep linearity. These distortions are
various short and medium range radar sensor concegi§dulating the intermediate frequency (IF) output signal
have been explored in the last years. Their commaen frequency and therefore smearing the target response.
requirement is to detect and localize obstacles in a la@ the other hand, very high control bandwidths are often
in front of the vehicle [1], [2]. The observing area shoul@imited by component parameters and can cause spurious
be resolved in two dimensions, usually range and crosgnal problems.
range by electronic means. The typical traffic scenerigg check whether the design of a signal source is practical
that fall into the required observing area can contaif a short range scenery, numerical simulations covering
many scattering objects with very different radar crosg major non-ideal effects, would be very helpful. From
sections. Moreover, some of the objects have radar crafg need, various behavior models have been composed
sections that vary with distance as for example verticahd compiled to a SimulifkFM-CW model. As for a
posts and walls. To be able to detect and localize objegiist practical application, the FM-CW model is applied
with relatively small radar cross sections particularlyo finding the optimum control bandwidth for the PLL in

pedestrians close to strongly reflecting cars a highe structure in Fig. 1 for a near range scenery from 0 to
target dynamic range is desirable. In addition to theom.

mentioned functional requirements, automotive sensors
have to be low cost and small size, limiting choices and !ll. DESCRIPTION OF THE SIMULATION MODEL

performance of RF building blocks. With the Simulink model, the time domain IF signal of
a homodyne radar scan from multiple targets taking into
account colored amplitude and phase noise, AM and PM
spurs and sweep linearity distortions caused by the PLL
) can be simulated. The amplitude and phase envelopes of
The target dynamic range of homodyne FM-CW sefpe |F signals for multiple targets are calculated for fixed
sors in a specific range gate is generally limited bymne stepskt, from various input parameters describing
the spectral noise and modulation side bands of stroggierministic and stochastic attributes of the building
adjacent targets including the always present quasi zefjcks, Fig. 2 shows the simplified block diagram of the

range-target caused by the local oscillator (LO) leakaggarnel of the simulation model. In the ideal (noise- and
Improvements of spectral purity can reduce the magni-

tudes and widths of the sidebands and therefore rise thé&® The MathWorks, Inc.

1
-
created simulation model. The model allows the simulation ‘ . }_)\ M mixerF
PFD
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I. INTRODUCTION

II. LIMITATIONS IN SHORT RANGE FM-CW SENSORS
CAUSED BY IMPERFECT SIGNAL SOURCES



AM input

! |
I
radar gain I - : IF output signal
] [ | X > I
time ! _ + |
T .
, —'OT>O;> sin(z) sum of all targets |
I
| A |
| | legend
WF input f(kts) ! + ! multiplicati
: plication
. O— (| [x] muete
| T \ O summation
target distancesy; : -z : -= vectorized signal
| '
| | \;arllabled(.ielay : — scalar signal
) I elay adj. |
out— . i
PM input : =z signal : equation block
L T T L o o e e e e e e e e e e e e e e e e = = J

Fig. 2. Kernel of the FM-CW model.

distortion-free) case the IF output signal of the model faecursive blocks. The simulation sampling ratés is

a number of targets with distancég and for an input chosen by a factor of 30 to 100 higher than the real

frequency rampf (kts) = fo+ S - kis is, system’s sampling times to be able to simulate the effects
of analog IF processing stages and to improve accuracy
of the PM compression factor. Simulating one radar scan
with 16K samples on a normal PC takes less than one

. second.
with 7 = 2 - R;/co the target delays an@; the radar

wi(kts) = — > Gy -sin (27 fon + 2nSktsn) (1)

gains. G are depending on the targets’ ranges, rac Bho@| .| Bib@)

i i G BE@ Ly BPE@ Ly vaze>y, LR )
cross sections and the sensor parameters contribL 5.0 @ | | Ab@) IF output
to a simple radar equation. The model implies tt high pass  low pass IF sample  quantisizer

. . . filter filter amplifier  Jimiter ~ and hold
the integration to get the instantaneous phase from stage

instantaneous frequency(t) = fotf(r)dr can be ap-
proximated by¢(t) ~ ¢ - f(¢t). Without the necessity to
know the absolute phases of the targets and for moderate )
sweep nonlinearities this approximation is very practical AS in & real system, the IF output signals of the
It avoids numerical integration of (kts) and therefore simulation kernel are processed _by an IF stage. In that
simplifies the model's kernel. For simulation of spectrdf Stage a number of standard Simulink blocks are used
noise and spurious signals, the phase and the amplitd@dnodel the analog baseband processing and the analog
of the IF signal can be modulated via the inputs AI\)P digital conversion. Fig. 3 shows the Simulink block
and PM in Fig. 2. In the case of PM modulation thé&liagram of the currently implemented IF stage 3. It
compression factor describing the correlation of the phal§i¢ludes two filters to confine the IF frequency range,
noise in a homodyne FM-CW architecture is taken int8" |F amplifier and the three blocks limiter, sample and
account by using a variable transport delay block avafllold, and quatisizer forming together a simple analog-to-
able in Simulink. As this block has to interpolate or evefigital converter.

extrapolate [3] for delays in the range of the simulation

Fig. 3. Simulink model of the IF stage.

time steps, it is becoming imprecise for very close targets. \/\/\/\ | Hoged2) PM input
For that the variable delay element is not used for the nose AM input
simulation kernel. However, to delay the phase noise random generator FIR spectral noise filter

signals it has been found accurate enough. The local
oscillator leakage effects are modeled by adding a short _/_
range target to the simulated targets. The radar cross f(@)
section of this additional target is derived from the input frequency rampf(kts)  phaseffrequency filter
LO-leakage value and its range can be estimated from

the RF layout. The limitations of the variable delay line  Fig. 4. Principles to model the non-ideal signal source.
elements increase the compression factor and therefore

can lead to an overestimation of the LO-effects in the _ ) )

simulation. A. Smulation of spectral noise

To be able to plug the model into higher level simulations, To simulate spectral noise, the outputs of random
the simulation times are kept short by the avoidance ntimber generators are valued by finite impulse response

| Hp (z) [—* WF input




i B. Smulation of modulation non-linearities caused by a
] s:imulated qoise e PLL
; ' ' ' In the signal generation architecture depicted in Fig.
_gol - R T S SR 1 a PLL is used to transfer the frequency modulation
' ' waveform generated by the DDS from the baseband to
the desired RF frequency band. In this transformation the
limited bandwidth of the PLL is deforming the waveform.
The limited bandwidth of the PLL is modeled by filtering
the input waveformf(kts) by a digital low pass filter
(see Fig. 4). The filter is representing the forward phase
transfer function of the PLL and its coefficients are
; ; ; ; ; obtained from the PLL synthesis. With system theory it
00 1000 freéﬁggcy i oo0 2500 3000 can be shown that it is equivalent to filter the frequency
or the phase waveform, if absolute phase terms can be
Fig. 5. Exemplary simulation of PM nois8y. The x-marked curve omitted. In a typical FM-CW radar the frequency devi-

describes the input values for the caIcu_Iation othe filtmfﬁcignts, the ation is several orders of magnitude higher than the IE
dotted curve the power spectral density of a simulated negsgience

of 16384 samples with sampling timte = 52 ns. The order of the used frequency caused by a target, so even very small changes
FIR filter is 400. in the modulation waveform produce considerable errors

in the IF signal. For that reason the passband of the

PLL representing filter must be modeled very accurate,
(FIR) digital filters. The coefficients of the filters arewhich is not possible with the general FIR approach used
derived from input data describing the source’s AM angh model noise. If PLL design data are not available,
PM noise. The amplitude of the random generators jgaximally flat low pass filters, e.g. of Butterworth type,
normalized to the Nyquist bandwidth of the sampling rateaving a corner frequency equal to the PLLs natural
in the simulation. For calculation of the filter Coeﬁicie,ntsfrequency, is found to be practical to approximate the
the frequency sampling method is used [4], [5]. In thiforward transfer function. A third order PLL needs to be
method time domain samples obtained from the inverggodeled by a second order butterworth low pass with
Fourier transform of samples of the desired frequency rgo dB/decade slope in the stop band upside the natural
sponse are taken as coefficients for the FIR filter. To avoigequency of the loop. This results in a 3rd order digital
side-lobes in the stop bands caused by the finite lengthfitfer design.
the impulse response a Kaiser window is applied to the
filter coefficients. The derivation of the filter coefficients V- EXPERIMENTAL VERIFICATION OF THE MODEL
requires linearly spaced frequency samples starting fromAlthough the simulation model is designed to optimize
frequency 0 to half of the sampling frequenfy=1/ts the imaging radar sensor presented in [8], a simple one
of the simulation. If the time step; of the simulation channel monostatic sensor setup composed of a level
is chosen very short, e.g. to reduce overestimation of teensor module [9], a separate PLL board, a horn
LO-leakage effects, it must be ensured that the filter ordentenna, and a DDS module is used for verification of
is high enough to describe the low frequency componeritee simulations. The setup realizes the architecture of
of the noise to be simulated. Fig. 1 with a high degree of flexibility and a bandwidth
Though not being very efficient in the number of coef up to 2GHz, which is helpful in masking out the
efficients required to approximate a desired frequenexamined effects from other influences. In addition an
response, the method has the advantage of modelidgalized target scenery with one strong reflecting target
arbitrary noise shapes with acceptably good accuracy.necessary so that the examined signal source effects
The input noise shapes can be obtained from phase naise not hidden by clutter reflections.
measurements or circuit simulations. The approximatidn a first setup a 40 cm corner reflector with ap®0 m?
errors are low, if there are no steep transitions and slop@slar cross section is measured in an absorbing chamber.
in the filter response. This is normally the case for phafae to the limited size of the anechoic chamber, the
and amplitude noise envelopes, so the method is wediflector is only at a distance oR = 5.3m. The
suited to this problem. In Fig. 5 the simulation of asimulation parameters are set to the parameters of the
PM noise envelope is demonstrated. In comparison sensor setup and the scenery. A summary of these
the methods presented in [6] and [7], the here presentegrameters is given in Table I.
approach with FIR filters is more flexible, because it
allows to simulate any colored noise in time domain Some test results are depicted in Fig. 6. All radar re-
based on available frequency domain data. sponses are calculated from the IF time domain signals by
By feeding harmonic signals into the PM- or the AM-port fast Fourier transformation with zero padding for higher
of the simulation kernel, the effects of spurious signalange accuracy and a time domain window function for
can be analyzed, too. 60 dB side lobe suppression. Exactly the same processing
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Parameter value Simulation and Measurement

0 T
center frequency 245GHz [\ — simulation
frequency deviation 1GHz _20_:“ ==~ measurement ||
transmit power 8dBm aQ '
over all conversion gain| 20dB £ 1
antenna gain 19dB 8 —40p|"
waveform up-ramp 5
sweep time 950 ps § 6ok
PLL bandwidth 40kHz -
IF bandwidth TOKHz—250 KAz g , : ,
sampling rate 600 kHz < 10) SERSIRRRrLER] L SYPHITERPERPEETER) [RRIEPIERIES : ERTERTRRTIEFIERARES Y RYREE.{ YH PARRRNE
ADC 12bit
# samples recorded 256 : : :
phase noise see Fig. 5 _1000 5 10 15 20
target radar cross sectioh 189n? range in m
target distance 5.3m
TABLE | Contributions
PARAMETERS OF THE SENSOR SETUP AND THE RADAR SCENERY 0 — ideal signal source
FOR THE VERIFICATION MEASUREMENTS : — with phase noise
o —20f ezl = = - with LO leakage and phase noise ]
E H H
2 -40
o

is applied to the time domain data from measuremel % ; ; ;
and from simulations. In the top diagram the simulaticZ ~0V e e N AT,
results including the effects of phase noise, local oscg
lator leakage, and modulation nonlinearity of the use
PLL design are compared with the test measuremer ; , ;
Simulation and measurement show good agreement 1005 5 10 15 20
the target dynamic range, which is in the range of 40c. range in m

and in the target’'s shape. However there are discrepancie%ig. 6.
in the simulated and measured zero range target caused

by LO leakage. Despite a worst case assumption of only

12dB LO suppression, the measured zero range targethecoming smaller than 5. The best value for the
is much higher than predicted by the simulation. In thgatural frequency is the one that minimizes the integral of
bottom diagram of Fig. 6 the simulated target responsgfiase noise within the sensor’s IF bandwidth. With high
with an ideal signal source are plotted together Witghase noise contributions from the VCO but low noise
the simulated target responses taking into account phaggtributions from the other synthesizer blocks and for
noise only and LO-leakage plus phase noise. From thifort sweep times, the optimum is the highest possible
comparison, it can be deduced, that the largest contfatyral frequency. If the VCO phase noise contributions
bution to the noise floor is the phase noise modulatinge |ow and the sweep times are short, the optimum will
the target signal. The second largest contribution is tig found at low natural frequencies. The highest possible
zero range target caused by LO-leakage with its noiggtyral frequency is limited in practice by feasibility
side-bands. The margin for modifications in the availablgf the loop-filter components. Additionally, the VCO
radar setups and limitations in creating idealized targghase noise performance often decreases for high natural
sceneries, have prevented experimental verification of t 8quencies because of the low capacitive load at the
simulated PLL sweep non-linearities. tuning input.

In Fig. 7 the simulated target responses for 8 targets
and the associated phase noise envelopes are plotted
The FM-CW simulation model is combined with thefor two much differing natural frequencies (20kHz and

formulas for PLL loop-filter synthesis and an availabld MHz)for an exemplary sensor similar to the one in [8].
PLL phase noise simulation library, in which the theorirhe sensor parameters are given in the figure's caption.

of [10] has been implemented. With this combination

the synthesized signal of the given FM-CW sensor ar- VI. CONCLUSION

chitecture is analyzed and optimized for ranges from The effects of non-ideal signal sources in short range
0-50m. The results of a series of simulations, usingM-CW sensors have been discussed, and a model for the
realistic PLL parameters deduced from measured datasifulation of spectral noise, modulation nonlinearities,
the available experimental sensors, can be summarizecaimd local oscillator leakage has been presented in detail.
the following statements: the PLL sweep nonlinerities arEhe simulation model has been verified qualitatively with
significantly influencing the target responses only if tha simple sensor setup. Finally, the simulation model was
product of sweep time and natural frequeriGy fnp. applied to optimize the signal source for an exemplary

ar res,
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Diagrams on the verification of the simulation model.

V. OPTIMIZATION OF A SIGNAL SOURCE



Radar Response Phase Noise Envelope

T T T T T T T T T -20
20 — fn,PLL =20 kHz
— — ideal source -40
z
-40 S -60
g | | g
c
—soH \ Il £ N <, -80
o1 Il =
e | et ,
: ‘: | ! ‘: | Vi ~100
-8 PR O B i MR | N 1 ’
| | N i A v ! ANIRY
.‘ 1\!"U 'W LRSS LR R A \H ”1 1,' ”\“ LA LA IS T S N S S S St
0 5 10 15 20 25 30 35 40 45 50 10° 10° 10° 10’
T T T T T T T T T -20
20 — fn,PLL =500 kHz
— — ideal source -40
T
-40 g -60
8 8
-60H 5o 80
| -
! I
| “I I A ‘| | . Il -100
—80f, ™ 1wl 1 [ N
KRR i [T | vl T
I mUU ) L'\u RUAESIRR SUTR u‘ /' L ”u." ARATHL Wumnf.( LA NI 120— - :
0 5 10 15 20 25 30 35 40 45 50 10* 10° 10° 10’
range inm offset frequency in Hz

Fig. 7. Simulated spectra of 8 targets with alternating ramtass sections of m? and 100m? at distances of 4, 5, 9, 10, 19, 20, 39, and
40 m for two different PLL control bandwidth20 kHz (top) and1000 kHz (bottom). In the right hand diagrams the single side baimase noise
envelopesL, of the corresponding PLL designs are plotted. Limited aritendwidth of the PLL causes deformations in the targgiaeses in
the top diagram. Further parameters but still not an exhaulst are: Frequency deviation: 1 GHz, sweep time: 33Gpmpling rate: 6.25 MHz,
2048 samples, transmit power: 8 dBm, conversion gain: 3GdBsnna gains RX and TX: 12 dB, IF bandwidth: 8 kHz— 3.125 MAR2C: 12bit,
LO-leakage: -12dB at an electrical length of 0.5m, phassenof the VCO: similar to Fig. 5

medium range FM-CW radar sensor. In the near futurg9] J. A. Kielb and M. O. Pulkrabek, “Application of a 25GHz

the EM-CW model will be used to ana|yze the influences FMCW radar for industrial control and process level measure
. . . . ment,” in IEEE MTT-S Int. Microwave Symposium (IMS) Digest,
of non-ideal signal sources on the two dimensional radar | 1999, pp. 281-284.
responses of the imaging sensor presented in [8]. [10] V. F. Kroupa, “Noise properties of PLL systemdEEECOM,
vol. 30, no. 10, pp. 2244-2252, October 1982.
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