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Abstract—A simple 3D surface estimation algorithm for ultra-
wideband (UWB) pulse radars is presented. This algorithm based
on trilateration is easy to implement and needs no preprocessing
of measurement data. Mathematical derivations of the formulas
for both monostatic and bistatic radar imaging setups are
derived. The performance of the proposed algorithm is verified
in 3D surface measurements, and a good agreement with well-
established methods is shown.

Index Terms—3D imaging algorithms, surface estimation, tri-
lateration, ultra-wideband (UWB) pulse radars

I. INTRODUCTION

Ultra-wideband (UWB) pulse radar technology has great
potential for imaging and localization applications due to its
high range resolution and good non-destructive penetration
abilities of dielectric materials. These features make this
technology also attractive for medical sensing and imaging
applications. One challenge in this field is the localization of
objects inside a human body.

In most through-dielectric localization problems like
through-the-wall imaging a uniform interface between the two
media is assumed. This allows localizing a target without
any knowledge about the boundary surface properties [1].
Different localization algorithms like SAR imaging [2] and
trilateration can be used to solve this problem. However, with
a non-uniform interface the global coherence is lost, and a
trilateration method has to be applied [3].

In this paper we investigate if trilateration can be used not
only for the localization problem but also for the estimation
of the boundary surface. In recent years different highly
accurate surface estimation algorithms have been proposed.
These imaging algorithms often need complex preprocessing
like the Seabed algorithm [4], where wave fronts have to
be recognized and estimated [5]. For other approaches, like
the Envolope of Spheres algorithm [6], the curvature of the
target shape has to be determined first. Recent developments
achieved even higher accuracies, however with a significant
increase in complexity and computation time [7].

II. DESCRIPTION OF THE ALGORITHM

Radar measurements with quasi-omnidirectional antennas
only provide information about the target distance, but not
about its direction. This makes surface imaging an inverse
problem which can only be solved by combining measurement
results at different antenna positions. In this case target rang-
ing using trilateration means determining the intersections of
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spheres of measured target distances. The underlying assump-
tion for utilizing trilateration as a surface estimation method is
that two neighboring antennas are “seeing” the same scattering
center. As with other imaging algorithms this assumption can
lead to inaccuracies of estimated target points.

A. Setup with Monostatic Sensors

The imaging principle shall first be explained using a two-
dimensional example. Fig. 1 shows the measurement scenario
of a linear array of monostatic radar transceivers arranged
along the z-axis scanning the surface of a target varying in
z-direction. Each array element is measuring the distance to
the closest point on the target. Two exemplary measurement
points X,, and X,,; are picked out, and semi circles whose
radii correspond to the measured target distances are plotted
around the antennas. The wanted target point is the intersection
of the two circles.
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Fig. 1. Cross section of a 2D imaging problem using a linear array of mono-
static radar transceivers along the x-axis. Two exemplary measurements at the
positions X, and X,, 11 illustrate target point estimation by trilateration.

Three-dimensional imaging demands for a third antenna
position which has to be located in a different dimension. This
setup is shown as a top view in Fig. 2. At each of the three
points a target distance r; is measured which leads to a set of
spheres with radii r; around the respective antenna position
A;, as defined by the equation system

ri= 2* 4+ oy 42 (1)
ra=(zx—d)?+ 3> +2° )
3= 2 +(y—j)P+2 3)

where d and j are the distances between two antennas in x-
and y-direction, respectively. For simplicity, the first antenna
position A; shall be at the center of the coordinate system.
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The above equation system is valid for a planar antenna array.
In case of a curved antenna array an offset z-value has to be
inserted.
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Fig. 2. Top view of three measuring points of an antenna array in the x-y-
plane. At each antenna position A1.3 a target distance r1.3 is measured.

The initial assumption that all three antennas are “seeing”
the same target has to be assured by comparing the measured
target distances r.3. If the difference between these distances
is small enough the assumption can be considered valid. For
the above equations this precondition can be formulated as
follows:

|11 —ro| < Tip and  |ry — 73| < Ty “4)

A threshold 75 in the range of about half the antenna distance
has shown good results.

If the conditions in (4) are fulfilled, the target surface point
of interest can be calculated by intersecting the three spheres.
The coordinates (z,y, z) of the intersection are

Tf—r§+d2

_nontd 5
z 94 @)
P22 4 2
y:12733 (6)
J

z=4/r? — 22 — g2 (7

These coordinates are offsets refering to the position of the
first antenna A;. The sign in (7) depends on the arrangement
of the radar transceivers. In the following we assume that the
antennas are oriented to positive z-values.

B. Setup with Bistatic Sensors

When performing bistatic radar measurements the targets
have to be located on the shells of ellipsoids instead of spheres.
Fig. 3 illustrates the cross section of the ellipsoid obtained
by a bistatic radar measurement with two antennas at the
positions X; and X;. With the measured time-of-flight of the
transmitted pulse, corresponding to r1+r9, and the spacing e
between transmitter and receiver, the equatorial radii defining
the ellipsoid can be calculated as follows:
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Fig. 3. Cross section of an ellipsoid of possible target locations for one
bistatic radar measurement with the antenna spacing e. The parameters a and
b are the equatorial radii of the ellipsoid.

The ellipsoid is rotation-symmetric with respect to the z-axis,
so the parameter b is also valid in y-direction.

In analogy to Fig. 2 and eq. (1)—(3) the system of equations
of the three ellipsoids needed for trilatation is

x2 y2 22
= 2 =1 10
7 + E + » (10)

(z —d)? y: 2
¥ 1 11
a2 + ® + 2 (11)
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In order to solve the system of equations we subtract (10) from
(11) and get
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The wanted target coordinates (x,y, z) are now calculated to

-<, if A=0,
T = . (14)
=B+VB2-4AC W , otherwise.
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Obviously the additional parameters a and b, connected to the
bistatic antenna spacing e, lead to more complex formulas
compared to those of a monostatic radar setup.

C. Formulation of the Algorithm

The necessary steps of the proposed trilateration algorithm
can be summarized as follows, using the example of a mono-
static radar setup:

1) Pick three neighboring measurement points in two dif-
ferent dimensions (here: along the x- and y-axis).

2) Extract the target distance from the recorded radar
measurement data at each antenna position. Multiple
target responses per measurement are possible.
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3) Check if the differences between the measured distances
satisfy the trilateration condition in eq. (4).

4) If the previous condition is fulfilled, calculate the target
coordinates using eq. (5)-(7).

5) Repeat the two previous steps if higher order reflections
exist, or otherwise start over with the next three mea-
surement positions.

III. MEASUREMENT RESULTS

The radar measurements for the evaluation of the proposed
algorithm have been performed using a custom built bistatic
radar sensor [8] for the FCC UWB frequency mask. It trans-
mits a 1* derivative of a Gaussian pulse and uses a correlation
receiver to determine the target distance. Both the transmitter
and the receiver are equipped with a planar Vivaldi antenna.
Fig. 4 shows a typical correlation signal obtained with a plane
metal target at a distance of about 29 cm. The amplitudes in
the range from Ocm to 10 cm are due to coupling between the
transmitting and the receiving antenna.
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Fig. 4. Correlation output of the radar sensor. The antennas are placed in

front of a plane metal plate at a distance of 29 cm.

In the measurements presented here, an array of radar
transceivers is simulated by performing linear scans with only
one transceiver element. For every measurement position of
the scan the correlation is evaluated, and one or more target
distances are extraced depending on the correlation strength.

A. Measurements in 2D

In a 2D setup the equivalent of the above mentioned
trilateration procedure is the calculation of intersection points
of circles. Fig. 5 shows 108 semi circles obtained from
monostatic radar measurments with the transceiver moving
along the x-axis between the coordinates -60 cm and 0 cm. The
step width between each measurement was 0.5 cm resulting in
a total of 121 measuring points.

The calculated intersections of these semi circles are dis-
played in Fig. 6. These estimated points show a good agree-
ment with both, the ideal target shape and the results of
the Seabed algorithm which are illustrated in Fig. 7. The
points obtained with Seabed show a much smoother alignment
because this algorithm evaluates wave fronts which can be
interpolated once they are recognized leading to more uniform
estimated shapes. This advantage, however, is only given for
the clear wave fronts of simple geometric shapes and becomes
less significant when trying to estimate more complex shapes.
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Fig. 5. Set of semi circles of measured target distances. The dashed line

describes the shape of the target object.
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Fig. 6. Estimated shape points obtained by the calculation of the intersections
of the above set of circles.
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Fig. 7. Estimated shape points of the same measurement using the Seabed
algorithm.

B. Measurements in 3D

3D surface measurements have been performed using linear
radar scans in two dimensions. As a target object a plastic
dummy of a male torso of about 60 cm height has been chosen.
In order to increase the target’s reflectivity the surface of the
dummy has been treated with conductive copper laquer.

Fig. 8 and 9 show the estimated surface points using the
three aforementioned algorithms Seabed, Envolope of Spheres,
and trilateration. The step width between each measurement
position was 1 cm with a total number of 2856 measurements.
The trilateration algorithm generated 1084 surface points,
the Seabed and Envelope of Spheres algorithms 852 and
2687 points, respectively. The reason for the high number of
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Fig. 8. Estimated surface points using the Seabed, the Envolope of Spheres,
and the proposed trilateration algorithms for the measurement of a human
torso dummy with a planar antenna array.

i

A Seabed

@ Envelope of Spheres M Trilateration

Fig. 9. View of the above estimated target points rotated by 45°.

estimated points using the latter algorithm lies in the nature
of the applied method and does not neccessarily imply that
more information about the target surface has been gained.
This can also be seen in Fig. 8 and 9, where the area covered
by estimated surface points is about the same for all three
algorithms. What can be observed as well is that the results
of the proposed trilateration method agree very well with the
data obtained using the established imaging algorithms.

C. Examination of Surface Estimation Errors

The accuracy of the three algorithms has been compared
measuring the surface of a metal sphere with a known diameter
of 35 cm. For the comparison of bistatic measurements the En-
velope of Spheres algorithm has been modified to an algorithm
using the envelope of ellipsoids. The error distance between
estimated points and the ideal surface of the target sphere

has been calculated and plotted in Fig. 10-13 for monostatic
and bistatic radar measurements and for different densities
of measurement points. The graphs show the percentage of
estimated points having a certain deviation in cm from the
ideal surface. In order to compare the results of the different
algorithms at exactly the same coordinates, the estimated
points have been interpolated on an identical coordinate grid
covering the whole area of the estimated surface.
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Fig. 10. Percentaged distribution of the difference between estimated and

ideal surface points for different imaging algorithms in a monostatic radar
setup with the distance d=1.5cm between measuring points.
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Fig. 11.  Percentaged distribution of the difference between estimated and
ideal surface points for different imaging algorithms in a bistatic radar setup
with the distance d=1.5cm between measuring points.

TABLE I
ROOT MEAN SQUARE ERROR (RMSE) OF THE MEASUREMENTS
PRESENTED IN FIG. 10-13.

Measurement series | Trilateration | Envelope | Seabed
Monostatic, d=1.5cm 0.259 cm 0.265cm | 0.272¢cm
Bistatic, d=1.5¢cm 0.199 cm 0.196cm | 0.209cm
Monostatic, d=6 cm 0.127 cm 0.169cm | 0.338cm
Bistatic, d=6 cm 0.166 cm 0.171cm | 0.253¢cm
While in the first two measurements in Fig. 10 and 11 a

relatively small step width of d=1.5 cm between two measuring
postions has been used, the measurement results in Fig. 12 and
13 show the errors obtained with a quadrupled step width of
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Fig. 12.  Percentaged distribution of the difference between estimated and
ideal surface points for different imaging algorithms in a monostatic radar
setup with an increased distance d=6 cm between measuring points.
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Fig. 13. Percentaged distribution of the difference between estimated and

ideal surface points for different imaging algorithms in a bistatic radar setup
with an increased distance d=6 cm between measuring points.

6 cm. In the bistatic setups the spacing e between transmitting
and receiving antenna has been 30cm. Table I displays the
calculated root mean square errors (RMSE) of each series of
measurement.

In Fig. 10 and 11 it can be seen that with a high density
of measurement points there is no significant difference of
estimation errors between the algorithms. The deviations from
the ideal surface points are in a low millimeter range. However,
with an increased distance between measurement points the
performance of Seabed is degrading significantly, while the
errors obtained with trilateration and the Envelope of Spheres
algorithm remain in the same range.

IV. CONCLUSION

A 3D surface estimation algorithm based on trilateration for
ultra-wideband pulse radars has been presented and derived
mathematically. Unlike other imaging algorithms, this method
needs no preprocessing of measurement data which simplyfies
its implementation. Formulas for both, monostatic and bistatic
radar imaging have been given. In 3D surface measurements
the performance of the proposed algorithm has been verified
and comparisons with established algorithms have shown a

good agreement between the respective results. The estimation
errors of all compared methods have been analyzed using
different densities of measurement points, where the proposed
algorithm has always achieved one of the lowest errors. The
proposed algorithm has therefore proved to be a qualified
alternative for fast and easy surface imaging.
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