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Abstract— Recent advances in automotive radar technology
have led to increasing sensor resolution and hence a more
detailed image of the environment with multiple measurements
per object. This poses several challenges for tracking systems:
new algorithms are necessary to fully exploit the additional
information and algorithms need to resolve measurement-to-
object association ambiguities in cluttered multi-object scenar-
ios. Also, the information has to be fused if multi-sensor setups
are used to obtain redundancy and increased fields of view. In
this paper, a Labeled Multi-Bernoulli filter for tracking multiple
vehicles using multiple high-resolution radars is presented.
This finite-set-statistics-based filter tackles all three challenges
in a fully probabilistic fashion and is the first Monte Carlo
implementation of its kind. The filter performance is evaluated
using radar data from an experimental vehicle.

I. INTRODUCTION

Radar sensors are a crucial element in modern vehicle
environment perception systems which is mostly due to their
ability to supply precise range and range rate (Doppler)
measurements, the robustness in adverse weather and lighting
conditions, and the comparatively low cost. Yet, radar sensors
have long provided limited information as they often yielded
a single detection per object. In recent years, however,
progress in automotive radar technology has led to increasing
sensor resolution which enables sensors to resolve multiple
detections per object. Thus, a more precise image of the en-
vironment is available and the additional information allows
to deduce object dimensions or even contours.

However, this development poses two major challenges
for tracking algorithms. First, so-called extended objects, i.e.
objects with an extent that is not negligible in comparison to
sensor resolution and which give rise to several detections,
violate the point object assumption which is commonly made
in classical tracking literature, e.g. for the standard Kalman
filter. Under this assumption, objects are assumed to be
small in relation to sensor resolution and to produce at most
one measurement. Secondly, the increased amount of mea-
surements aggravates the measurement-to-object association
problem which arises if multiple closely-spaced objects or
clutter measurements are present. Vehicle tracking constitutes
such a scenario as there are oftentimes several vehicles
and high-resolution radar sensors also provide a multitude
of measurements from other objects in the environment.
Also, high-resolution sensors are able to resolve spurious
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detections from spinning wheels which deteriorate tracking
results if falsely used for estimating the vehicle speed. A
third challenge emerges if multiple radar sensors are used to
increase the field of view (FOV) or to achieve redundancy:
the available information has to be fused to obtain a single
and consistent model of the environment.

There are two approaches to solve the extended object
problem. The first and probably most common method is to
add a preprocessing routine which reduces the measurements
to single meta-measurements by first clustering the detec-
tions which presumably originate from one object and then
inferring properties such as the centroid position or velocity.
An exemplary and recent approach has been presented in
[1] and [2], where the velocity and yaw rate of an object is
computed from high-resolution radar data in a single scan
by extracting velocity profiles using one and two sensors,
respectively. In general, preprocessing routines tend to fail
if there is ambiguity in the data of a single scan and the
object cannot be extracted clearly. The second approach is
to design extended object filter algorithms that work on the
raw measurements directly and are able to process multiple
measurements per object. Prominent examples have been
presented in [3], [4], and [5]. Yet, these methods are not
tailored to vehicle tracking with radar sensors and their
application is impeded by complexity, the lack of support for
range rate measurements, or inept modelling assumptions. In
contrast, a direct scattering approach as well as an extended
object model based on typical reflection centers have been
specifically designed for vehicle tracking with multiple radar
measurements in [6] and [7], respectively.

Random Finite Set (RFS) filters which are based in finite
set statistics (FISST) ([8], [9], and [10]) have recently
become popular tools for solving the second challenge, the
multi-object tracking problem. The key idea is to represent
the multi-object state as an RFS, i.e. a set which contains
all object state vectors but where not only the states but
also the number of objects are unknown and random. The
posterior density over this multi-object state is then estimated
recursively in a similar fashion to the standard Bayes filter.
Since both the object states and the measurements are
modeled as RFS, association ambiguities and clutter can be
treated probabilistically and are filtered over time. Different
extended object RFS filters have been proposed, including
Probability Hypothesis Density (PHD) [11] and Cardinalized
Probability Hypothesis Density (CPHD) [12] filters which
propagate the first moment of the multi-object density.
A recent development is the Generalized Labeled Multi-
Bernoulli (GLMB) filter for extended objects [13] which
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Fig. 1: Schematic overview of the state vector and measurement quantities
in the vehicle (VC) and sensor (SC) coordinate systems.

yields improved tracking performance in comparison to the
former filters and its approximate as well as computationally
faster Labeled Multi-Bernoulli (LMB) variant [13].

In this paper, a vehicle tracking approach is presented
that tackles all mentioned challenges. An extended object
LMB filter core is used in conjunction with the extended
object model from [6] which was selected because of its
simplicity and ability to handle complicated and ambiguous
situations. With this setup, the entire filtering process from
the raw target-level measurements to the tracks is dealt with
probabilistically. Furthermore, it is demonstrated that the
method can be used to fuse data from two or more sensors.

In the following, the tracking problem is first formulated
in Section II. Then, the measurement model and the multi-
object filter are presented in Section III and Section IV,
respectively. Section V demonstrates the accuracy and per-
formance of the proposed approach on real sensor data and
Section VI concludes the paper.

II. PROBLEM FORMULATION

The goal is to estimate the state and dimensions of
all vehicles in the surrounding of the ego-vehicle using
available radar measurements. For this purpose, each vehicle
is described by a composed state vector z;, = [§], (|7 € X,
where X denotes the state space and k the time step index.
The first portion & = [TR .k, YR,k Pks Uk, wk] . denotes the
kinematic state and consists of the Cartesian positions of
the center of the rear axle xr and yg, the orientation ¢,
the speed v, and the yaw rate w. These states are due to
the constant turn rate and velocity model which is used
for describing the vehicle motion. Additionally, the extent
portion (x = [ax,bx]” describes the width a and the length
b of the vehicle. All quantities are estimated in the vehicle
coordinate system which is located at the ego-vehicle’s center
of the rear axle with the x-axis pointing to the front and the
y-axis to the left. See Fig. 1 for a schematic illustration.
Since the location of the rear axle is very similar in most
passenger cars, a fixed length ratio is used to position the
center rear axle in the rectangle.

Since there may be multiple vehicles present, each object
is additionally assigned a label ¢ from the discrete label space
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L which uniquely identifies it. The labels are augmented to
the state vector which yields the labeled single-object state
x = [zF,¢)T. The multi-object state which describes the
entire scene, i.e. the state of each vehicle and the number
of present vehicles, is given by the RFS X C X x L
which constitutes a finite set of labeled state vectors with
random cardinality. The notation |X| is used to determine
the cardinality for a specific realization.

Note that this paper follows the notation from [14] which
uses lower case letters (z) for single-object quantities, upper
case letters (X) for finite sets, and bold letters (x, X) for
labeled states. The function £(X) = {¢ | [z,4T € X} is
used to project the labeled multi-object state to the label
space and to retrieve the contained labels.

The radar data is provided by several sensors which deliver
radar detections on target level. That is, the ¢-th measurement
zh [d},, af,, v}, ;|7 provides its radial distance d’, its
azimuth angle o', and its Doppler velocity v%, in sensor
coordinates, see Fig. 1. Since there are multiple measure-
ments in each cycle and the number of measurements m
varies, all measurements of one scan are described as the
RFS Zj, = {z}, ..., 2"} which is a subset of the measurement
space Z.

Using this formulation, the multi-object Bayes filter [10],
which is a rigorous extension of the classical Bayes filter to
RFSs, can be used to provide an estimate of the posterior dis-
tribution of the labeled multi-object state given the available
measurements up to the current time step 7y (Xx|Z1:1).
Hence, it provides a probabilistic framework to obtain an
estimate of the number of vehicles and their respective state
vectors directly from the raw measurements.

The multi-object Bayes filter iteratively propagates the
the multi-object distribution using a prediction and update
step. During prediction, the posterior multi-object density
from time step k — 1 evolves according to the Chapman-
Kolmogorov equation

Thlk—1(Xe| Z1:p—-1) =
/fk\kfl(xk|Xk—1)7rk—1|k—1(xk—1 | Z1:—1)0X g1

(D

and yields the prior multi-object density 7yx—1 (X |Z1:6-1)
at time k. The dynamics are captured in the multi-object
transition density fyx—1(Xx|Xy_1). Note that the integral
is a set integral as defined in [10].

In the update step, the new measurement set 7, is used
to compute the posterior multi-object density

ok (Xe| Z1:1) =
1 (Ze | X ) o—1 (Xk| Z1:1-1)
J 96 (Z | X ) e o—1 (X | Z1:6—-1) 0 X

using Bayes’ theorem. Here, g (Z;|Xk) is the multi-object
likelihood function which captures the measurement pro-
cess. As the following explanations focus on a single filter
iteration, the time index k is dropped in the remainder
of the paper to improve readability. Prior components are
distinguished with a + as subscript.
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III. MEASUREMENT MODEL

Before introducing the tracking filter equations, the center-
piece of the update step, the employed multi-object measure-
ment model, is presented. This is done in two steps: First,
the general multi-object likelihood is discussed. Afterwards,
the single-object likelihood function which is required to
compute the multi-object likelihood and which includes the
radar-specific portion is outlined.

A. Multi-Object Measurement Likelihood

Multi-object likelihood functions describe the relationship
between a multi-object state and the expected measurements.
Many RFS filters for extended targets use an observation
model which is based on the following assumptions:

1) Each object in the multi-object state is detected by
the sensor with the detection probability pp(z,¢) or
misdetected with probability ¢p(x,¢) =1 — pp(x, £).
If an object is detected, it generates an independent set
of measurements W which is distributed according to
the single-object likelihood function §(WW|x).
Additionally, the sensor produces clutter measurements
which are independent of the object states and fol-
low the Poisson RFS g¢ [10] with intensity function
k(2) = Aepc(z). That is, the number of clutter mea-
surements is Poisson distributed with parameter Ao
and the elements follow the clutter distribution pc(z).
In this work, a uniform distribution over the entire
measurement space is used for the clutter density.

In [13], it was demonstrated that the multi-object model
under these assumptions can be written as

2)

3)

|X|+1
X
9 ZIX)=gc(2) Y. > [tuzn0)]"  ©)
i=1 U(Z)eP:i(Z)
00U (2))
with
pp(2,£)§(Us 0y (Z)|,L)
wmm(x,z;e){ o0 00>0
qp(z,0), 0(¢)=0
and
go(Z) = e [x())7. (5)

In the above equations, the multi-object exponential notation

2] ni=) ©6)
reX

is used for brevity. It denotes products of real-valued func-
tions h(x) for all elements in a set X. For an empty set 0,
h? = 1. Also, P;(Z) denotes the set of all partitions which
separate the measurement set in exactly ¢ mutually exclusive
clusters and U(Z) is one particular partition. For a given par-
tition, association mappings 6 : £ (X) — {0,1,...,|U(2)|}
assign the objects to the measurement clusters in the partition
such that 8(¢) = 6(¢') > 0 implies £ = ¢’ and an association
to the index O stands for a misdetection. The space of all
association mappings is denoted by ©(U(Z)) and Uys)(Z)
identifies the cluster which has been assigned to the object
with label 4.
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Intuitively, (3) computes the probability of obtaining the
measurement set Z by testing all possibilities of how the
measurements could have been created and summing the
respective probabilities. The increment of one in the super-
script of the first sum makes sure that there is always one
additional cluster which contains unassigned measurements,
i.e. clutter. The factor go(Z) denotes the probability that all
detections are clutter measurements and individual elements
are canceled by the term in the denominator of (4) if the
corresponding measurement has been assigned to an object.

B. Single-Object Measurement Likelihood

For the single-object likelihood in (4), the direct scattering
model from [6] with adaptions to fit to the presented multi-
object measurement model is used. It models vehicles as
rectangles and provides a simple but effective approach
to represent the relationship between vehicle state and the
received measurements. The model is able to use the entire
Doppler information even in complex constellations such as
cross traffic or highly dynamic situations with high yaw
rates and works in situations with strong ambiguities. In
the following, the adapted model is presented briefly. For
a detailed discussion of the original measurement model
and evaluation of accuracy in single-object single-sensor
problems, refer to [6].

The single-object likelihood for a set of measurements W
is modeled as the Poisson RFS

Q(W|x,€) = eikT [/\sz(|x)}w (7)

where the multi-object exponential from (6) was again used
for brevity. This model is based on two assumptions: First,
the number of expected measurements is Poisson distributed
with expected value Ar and secondly, all measurements
are assumed to be conditionally independent and distributed
according to the measurement likelihood for a single mea-
surement p,(z|x). In practice, the number of received mea-
surements is difficult to model and does not necessarily
follow a Poisson distribution as it depends on the the sensor-
to-object constellation. By using an identical distribution for
both the measurement and clutter rate and setting Ay = A¢,
however, it is achieved, that the portions for the number
of target and clutter measurements in (4) cancel and no
preference is given to a specific number of measurements.
The single-object measurement likelihood p,(z|z) de-
scribes the likelihood of obtaining the three measurement
quantities for a given vehicle state and can be factored to

p.(z|x) = p.(d, a,vp|z)
= pup (VD|d, @, 2)pa(d|a, 2)pa (ax).

A trapezoidal probability density is used to model the like-
lihood for the azimuth angle p, («|x). That is, the azimuth
angle portion of the sensor FOV which is covered by the
rectangular vehicle model is determined and every angle in
this interval receives an identical density value. The density
values linearly decrease to zero to both sides of the vehicle
which introduces transition region. Measurements outside
these regions receive a likelihood of zero.

®)
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Fig. 2: Range measurement likelihood model with qualitative range densi-
ties: Ray 1 targets the rectangle, ray 2 passes it.

For a given state and azimuth angle, the expected range
measurement can be computed easily by intersecting an
imaginary ray with the rectangular vehicle model as il-
lustrated in Fig. 2. Rays that target the rectangle directly
result in the two intersection points dy; and dro where
the ray enters and leaves the rectangle, respectively. The
range density is then modeled as a mixture of two Gaussian
distributions which are centered at the intersection points.
The weights of both Gaussians ¢; sum to one and are set
to ¢ = 0.95 and ¢ = 0.05. This models the fact that
measurements are typically received from the surface facing
the sensor but ensures that rarely occurring measurements
that lie in the rectangle or on the averted side due to
reflections from the underbody can be handled. The standard
deviation of both Gaussians is given by o, and models the
range accuracy of the sensor as well as deviations of the
actual vehicle shape from the rectangular model. If a ray does
not target the rectangle but passes it, only a single Gaussian,
centered at the point on the ray that is closest to the rectangle,
is used. The standard deviation of this Gaussian increases
with the distance between ray and rectangle.

The expected Doppler measurement for a given vehicle
state is determined by

Op(x) = v-cos(a—¢)+w (yg - cos(a) — zg - sin(h)). (9)

As the Doppler velocity does not depend on the measured
range, py, (vpl|d, a, x) = p,, (vpla, z). It is again modeled
as a Gaussian distribution with the expected Doppler velocity
©Up as mean and standard deviation o,,, which depends on
the sensor specifications.

IV. MULTI-OBJECT TRACKING

The Labeled Multi-Bernoulli filter for extended objects,
which was introduced in [13], is used to estimate the pos-
terior multi-object density with the presented measurement
model. It provides a solution to the general multi-object
Bayes filter from (1) and (2) which is based on specific types
of multi-object distributions, the class of LMB distributions.

A. Labeled Multi-Bernoulli Distributions

Labeled RFS were introduced in [14] and are one form
of modeling the multi-object density 7(X ). As presented in
Section II, a label is attached to all components of the finite
set thus allowing to keep track of the object identity and its
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trajectory over several time steps. To ensure that track labels
are distinct and refer to one object only, the distinct label
indicator A (X) = §(]£(X)| — |X]) is introduced where
d(-) denotes the Kronecker-delta function. The following
paragraphs provide an introduction to the two labeled multi-
object distributions that are used in this paper, the LMB RFS
and the GLMB RFS.

1) Labeled Multi-Bernoulli RFS: An LMB RFS consists
of multiple independent and labeled components. The labels
¢ of all components constitute the discrete label space L.
Every component is described by a distribution of its state
p®(z) = p(z,£) and an existence probability r(©). Hence,
the multi-object density of an LMB RFS is given by

7(X) = AX)w(L(X))p* (10)
where 10 o
w(L) ZEHL(l—r(”)KHLf_M (11

defines the probability that only the objects with labels
L = £(X) exist. Here, 11,(¢) is the inclusion function which
is equal to 1 if and only if ¢ € L. Since LMB RFSs assume
independent tracks, they are limited in representing complex
situations where a multimodal cardinality distribution is
required due to strong interdependencies.

2) Generalized Labeled Multi-Bernoulli RFS: The GLMB
distribution overcomes the limitations of LMB RFSs by
allowing for multiple possible realizations from an index set
C for a set of track labels. It is given by

X
w(X) = AX) Y0 ex) [p0] a2
ceC
where the weights have to satisfy
3> wr) =1. (13)

LCL ceC

Note that in contrast to (10), there is no explicit definition
of the weights w(®)(£(X)) and various definitions which
satisfy (13) are possible. Hence, the GLMB RFS allows
multimodal cardinality distributions and is able to model
interdependencies among objects.

B. Labeled Multi-Bernoulli Filter for Extended Objects

The LMB filter for extended objects proceeds in three
steps: prediction, update, and approximation.

1) Prediction: The posterior multi-object density in LMB
RFS form is predicted using the standard multi-object tran-
sition density [10]. This transition assumes that each object
survives to the next time step with probability pg(z, ) or
disappears with probability gs(z,¢) = 1—pg(z, ). If an ob-
ject survives, its states evolve according to the single-object
transition density f (z|2’,¢). Additionally, new components
may be created and are combined in a birth density of LMB
form with label space B (L. N B = ()), component weights
rg), and densities pg) (x). This density is then added to the
predicted density of existing objects. As proven in [15], the
prior multi-object density which results from (1) under these



assumptions is again an LMB RFS with augmented label
space L, = L UB and parameter set

_ @ O @ @

7r+_{( +S’p+s)}eemu{<r3 ’pB)}ng (14)
with
s = ns(0)r® (15)
(z,0) 7', O)p(x’, 0)dx’
O TN 6
ns(0)

://ps(:c,Z)f+(x|x’,€)p(x’,£)dw’dw. (17)
2) Update: GLMB RFSs are a conjugate prior to the

multi-object likelihood from (3) [13]. Since an LMB dis-
tribution is a special case of a GLMB RFS, the update step
of the multi object Bayes filter from (2) yields

1X]+1
TXIZ)=AX) YD 3wyl (LX)
=1 U(Z)ePi(Z)
OEG(GL{(Z)) (18)
X
< [P Cuz))]
with
L
0 w (L) i) ()]
w“(Z)(L) ) 538 Q) J’
JCL i=1 U(Z)eP;(Z)
00 (U(2))
19)
p .’I;’E w .’L’,f;e
P, (u(2)) = ! >(ez>/l(z)( ), (20)
T z)(0)

and the prior weight w, (L) which is obtained from the prior
multi-object density through (11). The posterior distribution
captures all different hypotheses of measurement-to-object
associations and is now in the form of a GLMB, i.e. the
objects are not independent anymore. This is due to the
fact that the objects share the same measurement set and
measurement clusters can only be assigned to one object.

3) Approximation: In comparison to the prior LMB dis-
tribution, the number of components in the posterior dis-
tribution has drastically increased. Further propagating the
GLMB would result in a more complex filtering procedure
with increased computation time, which is especially detri-
mental if a Sequential Monte Carlo (SMC) implementation
is pursued. The LMB filter hence approximates the posterior
GLMB density by an LMB density which matches its first
moment. The parameters for the approximate posterior LMB
density are [15]

|L]+1

SEDID 3D

LCLy i=1 U(Z)eP;(Z)
0€0(U(2))

(0)
Wy (z)

(L1 (), (22
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|L|+1

S CDIDNEDY

LCLy i=1 U(Z)EP:(Z)
9eOU(2))

)

(f) Wiz

(L)1 (6)
(23)

x p @ (z,0).

During this process, the state densities of the objects remain
identical and the information loss mostly concerns the cardi-
nality estimate as well as interdependencies among objects.

C. Sequential Monte Carlo Implementation

The single-object measurement model presented in Sec-
tion III-B is highly nonlinear due to the the rectangular shape
and the intersection process between rays and rectangle.
Therefore, particle distributions are used to represent the
state distributions p(®) (z). In particular, a Rao-Blackwellized
particle filter (RBPF) scheme [16] is used in the underlying
estimation process for each object which consists of the
single-object prediction (16) and single-object update (20).
This procedure is identical to the single-object case from [6].
The state density

(@] Z) =p(&,¢1Z) = p (&1 2)p'V(CI¢, Z)
— Z wl(f’z)(S(f(i) _ f)p(e)
=1

is split into a portion for the kinematic state which is
represented by n particles and a geometric portion which is
modeled as a discrete distribution. Due to the conditioning on
¢ of the ¢-th particle, each kinematic state particle carries its
own discrete distribution for the object extent. The reader is
referred to [16] for the update equations of a RBPF filter with
discrete distributions. After the particles have been updated, a
resampling step is included to avoid sample impoverishment.

(DD, z) &4

D. Fusion Approach

For the fusion of data from multiple sensors, a centralized
fusion approach is chosen since it is makes the best use of
all available information and yields optimal results [17]. The
fusion system consists of a central processing unit and one
instance of the measurement model for each sensor which
is parameterized with corresponding sensor-specific values
such as the sensor position. As new measurements become
available, the multi-object density is predicted to the current
time and the prior density is then updated using the respective
measurement model instance.

E. Implementation Details

The following paragraphs address implementation issues
that have to be considered to apply the filter in practice.

1) Variation of the extent: The main goal of estimating
the vehicle dimensions is to adapt the detailed measurement
model to the required size and to get a coarse estimate with
decimeter accuracy. This is achieved by representing the
extent state as discrete distribution which allows a simple and
approximate estimation procedure. During prediction, pseudo
noise is added to the current estimate. That is, additional
size hypotheses which vary both the width and length with



fixed step size in positive and negative direction are added.
To avoid a drastic increase in size hypotheses over multiple
time steps, the extent estimate is approximated by its mean
value after each update step. Due to the strong correlation
of object extent and the position of the center rear axle,
changes in position may be wrongly explained by a change in
dimension. To avoid this issue, the corner of the rectangular
model that is closest to the sensor is kept fixed and size
changes are only allowed relative to this anchor point. The
variation of the dimensions is restricted to only include
reasonable vehicle hypotheses. The bounds are api, = 2.5 m
and apyax = 7 m for the length as well as by, = 1.4 m and
bmax = 2.5 m for the width. Also, the length-to-width ratio
is constrained to the interval [1.7,3.5].

2) Partitioning and association: Theoretically, the mea-
surement model requires the likelihood to be evaluated for
all possible partitions and associations, see (3) and (18).
As this is computationally intractable even for a moderate
amount of measurements, only relevant and viable clusters
as well as associations are evaluated in practice. Hence, the
computation time is reduced drastically while the possibility
to maintain several plausible and ambiguous association
hypotheses is still given. In this work, measurement clusters
are obtained by repeatedly applying distance-based clustering
algorithms with varying thresholds between 0.4 and 5 m.
Moreover, additional cluster hypotheses are added by further
splitting measurements in a cluster if the range rate measure-
ments indicate multiple objects that move differently. This
approach allows to obtain clusters which exclude spurious
measurements, e.g. from rotating wheels.

3) Initialization and pruning of objects: The birth density
in (14) introduces new objects to the filter procedure. A
new particle density is initialized as soon as a cluster of
measurements that has not been successfully used to update
an existing track is found and which also includes at least
one measurement with a Doppler velocity of more than 2.5
m/s. Hence, the filter only initializes moving objects and
the false alarm rate due to measurements from static objects
is kept low. Once an object is initialized, it may stop and
will still be tracked. New objects are initialized with an
existence probability of Tg) = 0.1. Objects are pruned if
their probability of existence drops below 1%.

4) Ego-motion compensation: Since the ego-vehicle
moves and the other vehicles are tracked with respect to the
vehicle coordinate system, ego-motion compensation steps
are included to correct the objects’ states before prediction
as well as obtained Doppler measurements.

V. EVALUATION

The proposed tracking algorithm was implemented in
MATLAB and tested on real world data obtained from two
short range radar sensors in a test vehicle. The two sensors
are mounted in the right and left corners of the front bumper,
have a range of approximately 45 m, and an opening angle
of +85°. The FOVs of both sensors overlap in front of
the vehicle, whereas the side areas are only covered by
one sensor. Additionally, the test vehicle is equipped with
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Fig. 3: Extract of single-object scenario: estimated trajectory (black) and
vehicle (black rectangles), ground truth trajectory (dashed gray) and vehicle
(gray rectangles), measurements of the left (gray) and right (black) sensor
in the vicinity of the vehicle, FOVs (solid gray).

a DGPS and inertial measurement unit (IMU) which is able
provide accurate measurements of the ego-vehicle position,
orientation and motion. Two scenarios have been chosen to
evaluate the filter performance: a single-object scenario for
evaluating the estimation accuracy when using two sensors
and a scenario with two vehicles that enter and leave the
FOV to demonstrate the multi-object capability. All results
were obtained by using 300 particles per object.

A. Single-Object Accuracy with two Sensors

In the single-object scenario, the ego-vehicle is at standstill
and a second vehicle is driving multiple horizontal eights in
front of the ego-vehicle. This scenario is highly dynamic as
the vehicle makes many turns, and changes its orientation,
speed, and yaw rate constantly. This requires an accurate
measurement model for correctly processing the Doppler
measurements. The target vehicle is also equipped with a
DGPS / IMU system that allows to compute ground truth
values for the kinematic states. As observable in Fig. 3,
which depicts an extract of estimation results to visualize the
scenario, the filter is able to track the vehicle well, even if
the vehicle leaves the FOV of the right sensor intermittently.
This is mostly due to the extended object model which
precisely represents the relationship between object state and
measurements. Also, the filter is able to process a strongly
varying amount of measurements which originate from all
four sides. To eliminate non-deterministic effects of the
SMC implementation, the filter was run 100 times. Average
estimation results along with the corresponding errors are
shown for each estimated state in Fig. 4. Note that the
position error is strongly correlated with the estimated object
dimensions. As the vehicle extent is not easily observable
from the measurements, the filter tends to underestimate
width and length which in turn increases the position error.

B. Multi-Object Scenario

To demonstrate the algorithm in a more complex setting,
a parallel traffic scenario with two target vehicles which
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Fig. 6: Cardinality estimate (solid gray) for the multi-object scenario
compared to the true value (dashed black)

comprises appearance and disappearance of objects was
recorded. Particular time steps which illustrate the scenario
and the estimation results are shown in Fig. 5. At the
beginning, the ego-vehicle follows the first target vehicle.
Then the second target vehicle enters the FOV to the left
(see Figs. 5a and 5b) and overtakes the ego-vehicle as well
as the first target vehicle (Fig. 5c). The first target vehicle
leaves the FOV as the ego-vehicle also overtakes it (Fig. 5d).
Clutter measurements are a major difficulty in this scenario
which is observable in Fig. 5a, where target vehicle two is
very close to clutter measurements from static objects next to
the road, and Fig. 5b, where the clutter is caused by spinning
wheels. In both cases, the association of measurements to the
vehicle is not trivial and a wrong association may cause the
filter to diverge. By probabilistically testing multiple different
association hypotheses, the filter is able to find the correct
association and to maintain the tracks.

Apart from the object states, estimating the number of
objects in the FOV, i.e. the cardinality, is the second im-
portant aspect in multi-object scenarios. Figure 6 depicts the
cardinality estimate for this scenario which is given by the
sum of the existence probabilities for all elements in the
posterior LMB distribution. The cardinality is underestimated
if few or no measurements are available to support the
vehicle hypotheses (e.g. at 14.5 s). It is overestimated if the
filter initializes false tracks due to clutter measurements with
significant Doppler velocity. In this scenario, the cardinality
estimate shows only small and short deviations from the true
value, which indicates that the filter successfully tracks both
objects and corrects false alarms quickly. The deviation at
the beginning exists because the filter is only allowed to
initialize the track as the first vehicle begins to move.

VI. CONCLUSION

In this paper, a multi-object tracking approach for tracking
vehicles in high-resolution radar data was presented. This
first SMC implementation of the LMB filter for extended
objects avoids preprocessing steps, fuses data from multiple
sensors and uses the available information in a fully prob-
abilistic fashion. This includes the entire processing routine
from raw sensor measurements to multiple association and
clustering hypotheses, fusion, track initialization as well as
pruning, and the final estimates. Experiments on radar data
demonstrated the filter’s ability to track vehicles in complex
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driving maneuvers and to handle clutter measurements form
static objects or spinning wheels. To reach the goal of a
fully probabilistic and robust environment perception system,
important future steps include porting the filter to real-time
capable languages and to fuse the radar data with other
complementary sensor measurements.
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