
Template Matching for Radar-Based Orientation and
Position Estimation in Automotive Scenarios

Johannes Schlichenmaier∗, Niranjan Selvaraj∗, Martin Stolz†, and Christian Waldschmidt∗
∗Institute of Microwave Engineering, Ulm University, 89081 Ulm, Germany

Email: johannes.schlichenmaier@uni-ulm.de
†Robert Bosch GmbH, Advanced Engineering Sensor Systems, P.O. Box 16 61, 71226 Leonberg, Germany

Abstract—Future high-resolution radars enable new function-
alities in advanced driver assistance systems, such as estima-
tion of contour, position, and orientation of vehicles on the
road. However, straightforward approaches like that of Oriented
Bounding Box generally fail in challenging automotive scenarios,
when only one side of the vehicle is visible to the radar. In
this paper, an estimation approach based on Generalized Hough
Transform matching is presented and examined for its use in
such automotive scenarios. An optimization method is discussed
and finally, the algorithm is compared against a classic approach.

I. INTRODUCTION

Upcoming trends in automotive technologies, like Advanced
Driver Assistance Systems (ADAS) and even autonomous
driving heavily rely on multiple sensors (e.g., LiDar, radar,
video based systems), to accurately estimate properties like
position and orientation of other vehicles on the road.

While sensor fusion and high-level processing like object
tracking can lead to good results on their own, given enough
time and processing power, an accurate estimation based on a
single-shot measurement is of very high importance, because
it greatly improves the initial accuracy and performance of the
subsequent processing steps.

Because it is mostly unaffected by environmental properties
like rain, snow, and darkness, radar as a very robust sensing
method is of special interest for acquiring accurate single-shot
estimations.

Currently, most of the research regarding position and
orientation estimation based on radar is limited to simplistic
approaches like that of an Oriented Bounding Box (OBB) [1].

While computational efficient, these simple approaches fail
to fully cover all possible scenarios. Due to the complex
interaction of radar signals with the environment, scattering
centers on automobiles tend to become unstable depending on
incident angle. This is especially true if only one side of the
car is fully visible to the radar.

II. PROBLEM FORMULATION

Classic estimation approaches like OBB generally fail to
produce a meaningful contour in scenarios where only one
side of the vehicle is visible to the radar, or not enough target
points are available to accurately estimate both width and
length. In these cases, a different approach is needed to provide
subsequent algorithms (e.g., tracking) with a good estimation

of orientation and position. In the following, such an algorithm
based on template fitting is proposed.

III. GENERALIZED HOUGH TRANSFORM

Hough transform (HT) is an analysis method used to extract
certain features (e.g., a line, a curve, etc.) from a set of test
points (e.g., pixels, target points, etc.) [2]. The basis for HT
is to span a (discretized) space of parameters used to describe
the desired feature and to numerically accumulate possible fits
for every parameter set valid for every test point in a so called
accumulator matrix A(ζ1, ζ2, . . . , ζN ). In the simplest case,
the desired feature is a line, often represented in Hesse normal
form ~x·~n0=d and described by parameters ζ1=d and ζ2=∠~n0.
After all test points have been taken into consideration, the
parameter set with the highest value in the accumulator matrix
is considered the best fit for the desired feature.

Generalized Hough Transform (GHT) is an extension of
standard Hough Transform, which was developed to use the
principles of HT on arbitrary shapes instead of analytical
functions like lines and curves. It too uses an accumulator
matrix to find most likely parameter sets for the shape [3]. It
is almost exclusively used in image processing, where it can
very effectively find various shapes and forms in pictures, like
circles, rectangles, or polygons.

A. Template Pre-Analysis

Instead of an analytical function, the feature to be extracted
in GHT is an arbitrary shape, the template. The template itself
is a pixel image, in the simplest case describing the desired
shape with zeros and ones along its edges.

Before the actual GHT analysis, the template is examined
pixel by pixel for pixel gradient, as well as the relative
angle and relative distance to a central reference point of the
template, the so called centroid [3]. This information fully
describes the template in a way that can be subsequently used
more effectively in the actual GHT analysis, to find the best
matching orientation and position in the given parameter space
(i.e. the accumulator matrix A(x, y, θ)).

B. Accumulator Matrix

For GHT, the accumulator matrix A(x, y, θ) has the same x-
y discretization as the template and an additional discretization
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Fig. 1. Algorithm chain for contour estimation with GHT.

for the orientation θ, all of which directly influence the match-
ing error margin for target points. In a too finely discretized
accumulator matrix the chance of two misaligned target points
voting for the same position and orientation is very slim, so
some amount of discretization is necessary. On the other hand,
the discretization generally limits the attainable accuracy, so
it should not be chosen too coarse.

After every target point has voted for their probable centroid
positions and orientations, the accumulator matrix can be
evaluated. In standard GHT, the entry with the highest accu-
mulated value is considered the correct position and orientation
set. This, however, for the most part is only valid for top-down
images with clear edges of high resolution.

In radar data this is usually not the case. Most of the time,
radial 2D radar measurements are made in the same plane
as the resulting image (r=

√
x2 + y2), which means that only

the objects’ near edges are visible at any given time. Also,
neither do radar target points usually form closed edges, nor
are they lined up ideally at the objects’ edges, which leads to
discontinuous and, compared to optical images, low resolution
radar images.

To account for this circumstance, a quality function is
employed in this work as described in Section IV-B. This
quality function is used to better fit the template into the target
points based on the characteristic behavior of radar signals
in automotive scenarios. This extends GHT to Generalized
Hough Transform with Quality Function (GHT/QF).

IV. MATCHING THE VEHICLE BOX

Fig. 1 shows the algorithm chain used to match the template
to the provided target list. The target list may be clustered
using an arbitrary clustering algorithm to get rid of unwanted
noise or separating multiple objects before feeding it into
the chain. However, other than classic approaches like OBB,
the template based approach does not rely on clustering and,
generally, will also work well, if more than the target points
belonging to the object are being fed into the chain.
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Fig. 2. Maximum scores of accumulator matrix for every orientation angle.

Together with the pre-analyzed template, the target list first
undergoes a GHT analysis as described in Section III, after
which the maximum score for every orientation angle θ is
determined (see Fig. 2).

The template itself has to be known before applying the
algorithm, e.g., from earlier measurements or a-priory knowl-
edge of the sought-after object.

To mitigate computational cost, but also to avoid missing
peak values on plateaus of similar value, the angle distribution
first is smoothed with a Gaussian kernel before probable peak
orientation angles are selected for further investigation.

For every one of the angles of interest, the 2D accumulator
matrix gets investigated for local maxima, each indicating a
possible matching position. For each of those local maxima,
defining a full parameter set of x, y, and θ, the quality
function evaluates the fit and calculates a score. At the end,
the parameter set with the highest score is selected as most
probable position and orientation for the template.

A. GHT Parameters

As already discussed in Section III, the parameters of the
GHT space, namely the discretization in x, y, and θ are very
important for a good result of the GHT analysis. For the radar
data examined here, the following values were chosen:

∆x = 10 cm, ∆y = 10 cm, ∆θ = 0.5◦. (1)

These values are in the same magnitude as the radar
resolution, which proved to result in a viable amount of
accumulation without unnecessarily sacrificing accuracy of
position, for the discretization being only marginally coarser
than the resolutions of the radar.

As basis for the template, a rectangular polygon with length
l=1.8 m and width w=4.8 m was chosen in accordance with
the known dimension of the used test car. For smoothing the
GHT scores, a Gaussian kernel with σ= π

64 was used.

B. Quality Function

Because of the aforementioned behaviour of radar signals
to primarily interact with near edges of objects, a subsequent
investigation of the selected orientations and positions is
necessary, to overcome shortcomings of the GHT principle
when being used on radar data.
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The quality function takes into consideration a multitude of
geometric properties about the relative position of target points
to the template’s edges under test, as well as the orientation
and position of the template itself in regards to the position of
the radar sensor. Fig. 3 shows the involved geometric entities
and their different properties as they are used in the quality
function for a sample target point P and the edge m=3.

1) LOS Factor γm: The Quality Function differentiates
between line of sight (LOS) and non-line of sight (NLOS)
edges. To accomplish this, for each edge m a line from the
midway point Mm to the position of the radar sensor R is
drawn. Edges whose line MmR ( ) does not intersect any
of the other edges are considered fully visible to the sensor
(LOS edge). If an edge m has an intersecting point Im, it is
considered not (fully) visible to the radar (NLOS edge).

Because points from more visible edges are of more impor-
tance to the quality function, a LOS factor γm is determined
for every edge, ranging from 1 (fully visible) to 0 (fully
concealed). LOS edges get assigned γm=1, whereas the LOS
factor of an NLOS edge is determined by how close the
intersection point Im is situated to the midway point of the
edge opposite to m. Thus, the ratio of im ( ) to em ( )
determines the LOS factor in such a way, that γm=0 for
im=em with a linear progression to γm=1 for im=0.

2) Prominence Factor pn: Every corner point Cn is as-
signed a prominence factor pn which is either 1, if the corner
point is connecting to one or more LOS edges, or 0, if not.
This prominence is used to assign a higher score to points
near a visible corner point (i.e. C2) in contrast to points near
a non-visible corner point (i.e. C4).

3) Projection Score Sp: The projection score is closely
related to the prominence factor and describes the probability
for a target point to be situated at a certain distance between
the two corner points of a certain edge of the vehicle. It is
uniformly 1 along LOS edges and falls with an raised cosine
along NLOS edges to gradually punish target points away from
prominent corners. Additionally, a grace distance of 0.5 m
allows for points being near a corner, but not above the edge.

The projection score of a point with the scalar projection
value dp ( ) for the edge m of length lm, enclosed by corner
points Cm and Cm+1 is calculated as follows:

Sp =


pm, for − 0.5 m ≤ dp < 0 m

pm+1, for lm < dp ≤ lm + 0.5 m

R
(
dp
lm

)
, for 0 m ≤ dp ≤ lm

0, otherwise

(2)

with pm and pm+1 being the prominence factors of the
enclosing corner points and R being a modified, inverted
raised cosine with roll-off factor β = 0.01, assuming values
between the prominence factors of the two respective corners:

R(x, v1, v2) =

(
1− si(x) cos(πβx)

(
1

1− 4β2x2

))
· |pm − pm+1|+ min(pm, pm+1). (3)
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Fig. 3. Exemplary visualization of the geometric properties considered in the
quality function for a target point P and the edge m=3 (C3C4) belonging to
a possible position and orientation of the template, denoted by the rectangle
C1C2C3C4C5 as well as the radar sensor position R. Edge C3C2I3 is
redrawn to denote i3.

4) Rejection Score Sr: The rejection score describes the
probability for a target point to appear at a certain distance
from an edge. As target points inside the boundaries of the
vehicle are very possible due to bounces from the floor,
points inside the template rectangle are considered up to a
rejection distance of 1.5 m. Points outside are considered up
to a rejection distance of 0.2 m.

The rejection score of a point with the scalar rejection value
dr ( ) to the edge m is calculated as follows:

Sr = G(dr, 0.55 m, 0 m) · rect
(
dr + 0.85 m

1.7 m

)
(4)

with G(x, σ, µ) being a standard Gaussian function.
5) Confidence Factor K: The confidence factor accounts

for the most likely event, that most target points T will
be situated within the boundaries of the template, and is
calculated using the following formula for a given position
and orientation:

K =

(
Tinside

Ttotal

)2

. (5)

Like the rejection score, it honors a grace border of 0.2 m
around the template, in which target points are considered
inside points.

6) Total Score: The total quality score Q combines all the
aforementioned factors and point scores for a specific position
and orientation using the following formula:

Q = K
M∑
m

(
T∑
t

Sp,tSr,t

)
γm, (6)

where M is the number of edges and T the number of points.
For every edge, the projection and rejection scores for all

target points are multiplied to represent the probability of
the points being near that edge. This edge score is put into
perspective by weighting it with the respective edge LOS
factor to avoid NLOS edges having too much impact on the
decision. The summation of the weighted edge scores is then
qualified by the confidence score to force the algorithm to
prefer more inside points.
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Fig. 4. Examples of template based position and orientation estimation ( )
for different target point distributions ( ) with ground truth rectangles ( ).

V. MEASUREMENT DATA

To verify the effectiveness of the extended GHT approach,
a total of 5,679 radar measurements were analyzed with the
presented template based estimation (GHT/QF) and tested
against a more classic approach using OBB, similar to [4].

The radar measurements were conducted with a 1x8 SIMO
radar using a bandwidth of B=2 GHz operating in the 77 GHz
frequency band. Using a chirp sequence modulation with a
high number of ramps and short ramp duration, a range reso-
lution of ∆R=0.08 m and a velocity resolution of ∆v=0.11 m

s
were achieved.

Using a car of type BMW Model E61 equipped with an
Automotive Dynamic Motion Analyzer (ADMA) sensor unit
as test vehicle, figure eight driving maneuvers as baseline for
comparison against the OBB approach, as well as driving away
from the radar sensor and transversal to radar sensor were
conducted.

VI. RESULTS

To get a first impression of the performance of the GHT/QF
approach, all the measurements were processed with both the
GHT/QF and OBB approach in regards to orientation and the
2D position error. The mean error, standard deviation, and
median error are shown in Tab. I.

As can be seen, both algorithms perform very similarly with
only a slightly higher precision for the OBB. This stems from
the very good and easy clustering due to the high number
of target points per object which are well situated along the
edges with very little clutter (see Fig. 4 (a)). This makes the
construction of an OBB very easy, whereas the template based
approach is limited by its discretization in both position and
orientation.

A. Challenging Scenarios

For 690 of the measurements, the OBB algorithm could not
find a bounding box of viable width and length (see Fig. 4 (b)).

TABLE I
RESULTS FOR THE BASELINE TEST.

eθ std(eθ) md(eθ) e2D std(e2D) md(e2D)
in ◦ in ◦ in ◦ in m in m in m

GHT/QF 7.82 8.59 4.77 0.45 0.39 0.37
OBB 6.29 7.36 3.51 0.42 0.62 0.31
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Fig. 5. Normalized PDF ( ) and CDF ( ) examination for orientation
and position errors in challenging scenarios.

TABLE II
GHT/QF RESULTS FOR THE CHALLENGING SCENARIOS.

eθ std(eθ) md(eθ) e2D std(e2D) md(e2D)
in ◦ in ◦ in ◦ in ◦ in ◦ in ◦

11.59 10.85 8.19 0.74 0.69 0.55

For these challenging scenarios, only the GHT/QF algorithm
was employed. In 13 % of cases, the target point distribution
did not allow for a distinction between the long and the short
side of the vehicle. The results of GHT/QF for the remaining
597 measurements can be seen in Tab. II.

While not as precise as in the baseline scenario, the achieved
position and orientation estimation is still in a usable range
for making a good estimate. Examination of the normalized
probability (PDF) and cumulative density functions (CDF)
reveals that around 40 % of measurements have an orientation
error of under 5.5◦, with the single mode being at 1.3◦.
Regarding the position, 90 % of the measurements experience
an error of under 1.46 m, with the single mode being at 1.3 m.

VII. CONCLUSION

In standard scenarios, the proposed template based algo-
rithm achieves similar detection performance for orientation
and 2D position of vehicles as classic methods like Oriented
Bounding Box (OBB). In scenarios, where only one side of
the vehicle is fully visible and OBB fails, it still achieves good
orientation accuracy with a median error of 8.19◦ and a very
good median 2D position error of 0.55 m. It is therefore a
highly viable alternative for when basic approaches like OBB
fail due to too few target points or high clutter.
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