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Abstract—For autonomous driving high-resolution radar sen-
sors are key components, which have the drawback of high
data rates. In order to reduce the amount of sampled data,
random samples can be omitted and afterwards reconstructed
using compressed sensing methods. A possible application is that
not every receiving antenna element demands its own analog-to-
digital converter. One converter can be used for several receiving
elements with a random assignment to each antenna instead. In
this paper, an analysis is presented of how many samples can be
neglected such that a successful reconstruction in post-processing
for an automotive scenario is possible. A measurement result is
shown to prove that with only 40 % of samples a successful
reconstruction is possible.

I. INTRODUCTION

To enable fully autonomous driving, high-resolution radar
sensors are required [1]. For a linear frequency modulated
continuous wave modulation, also called chirp-sequence, this
means a bandwidth larger than 1 GHz [2], and several con-
secutive frequency ramps are evaluated by different receiving
antenna elements. Usually, each receiving antenna element
has its own analog-to-digital converter (ADC) as shown in
Fig. 1 (a). To reduce hardware effort one ADC could be used
for several receiving elements as shown in (b). Either whole
frequency ramps from one antenna are sampled before the next
antenna is selected or the switching between different antennae
can be realised after a defined or random number of samples.

The application of compressed sensing allows to omit
random samples and restore them afterwards if certain con-
ditions are fulfilled [3], [4], e.g., for the radar application, the
signal is sparse in the frequency domain. Additionally, in the
automotive environment extended targets are present which
often results in a bunch of frequencies in close range. The
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(b) Only one ADC is used with a
switching scheme.

Fig. 1. Five different receiving antenna elements are present, which are
evaluated in parallel (a) with five analog-to-digital converters or using only
one converter as in (b).
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(a) Removal of whole chirps.
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(b) Removal of random samples.

Fig. 2. To reduce the data rate, 50 % of the acquired samples are removed.
In (a) whole chirps are removed and in (b) random samples. This results in
different artefact levels for the simulated targets ( ).

reconstruction algorithm should cope with these scenarios as
well.

The authors of [5] are removing random chirps to reduce
the amount of data resulting in higher artefact levels induced
by the missing data.

In comparison to remove complete chirps, the removal of
random samples has a lower influence on the rising artefact
level, which originates from missing data. In Fig. 2, a range-
Doppler evaluation is shown with 50 % of the data randomly
removed. In (a) complete chirps are removed resulting in a
rising artefact level in the same range cell, whereas the removal
of random samples in (b) just increases the total noise level.
This behaviour is explained for the assignment of subcarriers
in OFDM radar in [6]. Hence, in this paper it is proposed to
remove random samples of each consecutive chirp. An analysis
is presented on the influence of data reduction to the detection
rate, false alarm rate, and peak power reconstruction.

II. SIGNAL PROCESSING

The signal processing consists of several steps. First, the
signal generation and removal of samples, second, the recon-
struction of missing data, and finally, the analysis consisting
of target detection and evaluation.



A. Signal Generation and Data Removal

The chirp-sequence modulation [7] using L frequency
ramps with a bandwidth B, duration Tc, and chirp repetition
time Tr is applied. For the following analysis either whole
random chirps or random samples are removed. The positions
of the randomly removed samples are different for each ramp
which prohibits a certain pattern.

B. Signal Reconstruction

To reconstruct the missing samples the iterative method with
adaptive threshold (IMAT) [8] is applied. In the first step,
the missing samples are assumed to be zero and then, a two-
dimensional fast Fourier transform (2D-FFT) is applied. This
leads to a range-Doppler spectrum as in Fig. 2. As a starting
threshold the maximum peak power β is used. Every spectral
peak above this threshold is used to estimate the missing time
domain samples as a first approximation. In the following
iterations the threshold

thrn = βe−αn (1)

is exponentially decreased with n∈[0, N−1] being the current
iteration. As in each consecutive iteration the threshold is low-
ered, more frequency components are utilised to reconstruct
the missing data. The parameter α defines how fast the thresh-
old is reduced. It must be assured that in neither iteration the
artefact induced spectral components are above the threshold,
as in this case ghost targets are created. Therefore, the number
of iterations is limited, such that the threshold is not lower
than 10 dB above the noise floor to prevent an amplification
of random noise. In each iteration every sample in spectrum
that is classified as noise by the peak detection algorithm is
used to estimate the current noise power.

C. Signal Evaluation

The reconstructed time domain data is used to calculate
the range-Doppler spectrum. For target detection the ordered
statistic-constant false alarm rate (OS-CFAR) algorithm [9] is
used in combination with a peak search algorithm. In the
simulation the extracted targets are matched with the known
simulated ones. Hence, a detection rate is calculated as well
as a false alarm rate.

III. SIMULATIONS

The parameters of the chirp-sequence modulation used for
the simulation are given in Tab. I. For the influence analysis
of missing samples and their recoverability, an extended target
scenario is considered. Therefore, a vehicle is simulated using
the model proposed in [10]. In contrast to classic compressed
sensing applications, extended targets appear as broad peaks
in the spectrum consisting of several close frequencies. A
realisation with several close targets in range and velocity is
shown in Fig. 2, and the different power levels can be seen in
Fig. 3.
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Fig. 3. Simulated scenario consisting of close targets in range and velocity.
From the detected targets ( ) the strongest ( ) and the weakest ( ) are
selected for further analysis.

A. Influence on Detection Rate

As stated in the introduction and already shown in Fig. 2,
it makes an important difference if complete frequency chirps
or random samples are removed to gain an equal reduction of
samples [6]. The influence on the detection rate of the chosen
concept in combination with the percentage of samples present
is shown in Fig. 4 (a). As for each single simulation the noise
realisation and the pattern of removed samples is different, a
weak target can be visible or not. Therefore, for every level of
existing data several iterations are performed and the detection
rate considers all expected targets averaged over all iterations
with the same parameters.

It is noticeable that the detection rate of all targets drops the
more samples are removed if no reconstruction of the missing
data is applied. This effect is more severe for the removal of
complete chirps ( ) than for random samples ( ). This
also holds for the detection rate of the reconstructed signal.
If the weakest target has at least an SNR of 15 dB as in the
assumed scenario, a data rate reduction up to 60 % is possible
with a detection rate above 99.9 %.

TABLE I
SPECIFICATIONS OF RADAR PARAMETERS

Parameter Value
carrier frequency fc 76.5 GHz
bandwidth B 2 GHz
chirp duration Tc 70 µs
chirp repetition time Tr 80 µs
sampling frequency fs 25 MHz
number of chirps L 256
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(a) Detection rate of all targets shown in Fig. 3.
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(b) False alarm rate after OS-CFAR.
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(c) Reconstructed power and noise floor.

Fig. 4. Simulation of the influence of missing samples on the detection rate in (a), the false alarm rate in (b), and on the reconstructed power and noise
in (c). If only samples are removed the label ’thinned’ is used for the removal of random (’ran.’) samples or complete chirps (’chirp’). The application of the
reconstruction algorithm is labelled with ’IMAT’. In (c) random samples are removed and reconstructed to estimate the power and noise levels.

B. Influence on False Alarm Rate

Every detected target after application of the OS-CFAR and
the peak search, which was not simulated, is classified as a
false alarm. The false alarm rate is shown in Fig. 4 (b). It
can be seen that the false alarm rate of the randomly thinned
signal ( ) is nearly constant. The reason is that the more
samples are removed the noise floor is more dominated by
the artefact level induced by the missing samples. As there
are not many large spikes in the spectrum, false alarms are
low. Due to the fact that the targets are also loosing power
due to less samples, the reconstruction algorithm cannot select
the correct targets with certainty. Hence, some random noise
peaks are treated as targets leading to an increased false alarm
rate ( ).

As can be noticed in Fig. 2 (a) the removal of whole chirps
leads to rising ridges in the spectrum. As those ridges should
be ignored for target detection, the OS-CFAR searches for
targets in range cells only. If merely a few chirps are present
for evaluation, the ridge is very dominant, and no target is
found at all. This can be seen in the sudden drop of the
detection rate and the false alarm rate ( ).

C. Influence on Initial SNR

The simulated scenario consists of targets with different
power levels, cf. Fig. 3. For further analysis the strongest ( )
and the weakest ( ) target are of interest. The average noise
power and the power of the reconstructed targets are shown
in Fig. 4 (c). Removed samples are reconstructed only with
the dominant signal parts, i.e. with information of the present
targets and not with noise. This is the reason why the noise
level is decreasing if more samples are neglected.

If a target is very dominant, e.g., it has a high SNR, it is also
dominant in the thinned signal and can be reconstructed easily.
Hence, the reconstructed peak power of the strong target ( )

is constant for a long period. Weak targets are harder to detect
in the thinned signal and are only detected in the last iterations
of the algorithm. Hence, the reconstruction is possible but the
original peak power of the full signal cannot be reached. If
too many samples are missing, the weak target is not detected
anymore as can be seen by the sudden end of the reconstructed
power ( ).

The detection rate of weak targets can be enhanced if the
threshold of the algorithm is lowered, but then the false alarm
rate rises. Therefore, a trade-off has to be made between a
reasonable detection and false alarm rate. This also holds for
the parametrisation of target detection algorithms.

IV. MEASUREMENT EVALUATION

To verify the simulation results a measurement with an
experimental radar sensor is performed. The parameters of the
chirp-sequence modulation are the same as for the simulation
and listed in Tab. I. The radar sensor uses two 25 dBi-gain
horn antennae with a 3 dB beamwidth of 7◦ each. Hence, the
illuminated area is comparable small and therefore, a walking

Fig. 5. Photo of the experimental radar sensor with the two 25 dBi-gain horn
antennae.
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(a) Range-Doppler evaluation using the full signal.
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(b) Range-Doppler evaluation with only 40 % of the samples left.
Missing samples reconstructed with IMAT algorithm.

Fig. 6. Measurement of a walking pedestrian with two scattering centres (1 and 2). Evaluation of the full signal in (a) and with 60 % removed samples in (b).

TABLE II
COMPARISON OF TARGET POWER LEVELS OF FIG. 6

Target Power Original Power Reconstructed
1 −4.2 dB −4.6 dB
2 −8.6 dB −10.9 dB
3 −6.7 dB −7.5 dB
4 −8.7 dB −9.6 dB
5 −5.1 dB −11.0 dB

pedestrian is considered as target. A photo of the sensor is
shown in Fig. 5.

The range-Doppler evaluation of the walking pedestrian is
shown in Fig. 6 (a). The two prominent scattering centres 1
and 2 are detected, while 3 and 4 are stationary targets in
the laboratory. Unfortunately, an internal interferer is always
present, which is target 5. To suppress the DC peak a dig-
ital high-pass filter is applied. Otherwise the reconstruction
algorithm would amplify the DC component too much.

With a data reduction down to only 40 % of the samples,
in most cases every target should be detectable regarding
Fig. 4 (a). For that reason 60 % of the samples are removed and
the IMAT algorithm is used for reconstruction. The processed
range-Doppler evaluation is shown in Fig. 6 (b). Tab. II
compares the peak power of the full signal to the reconstructed
one. All target peaks can be successfully recovered after the
application of the IMAT algorithm. As the parametrisation of
the reconstruction algorithm is optimised, no noise clutter is
amplified.

V. CONCLUSION

In order to reduce the data rate of a chirp-sequence radar
sensor random samples are removed and later on reconstructed
using a compressed sensing approach. This lowers the number
of required analog-to-digital converters. It is shown that the

removal of random samples has a significant advantage over
the removal of complete chirps. Simulations show the data
rate reduction that is achieved without loosing the detection
of weak targets. If a target has an SNR of roughly 15 dB a
reduction of 60 % of samples offers a detection rate of 99.9 %.
The results are verified with a measurement of a walking
pedestrian.
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