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Abstract— Employing frequency bands above 100 GHz for
future frequency-modulated continuous-wave (FMCW) radar
applications necessitate hardware realizations as monolithic
microwave integrated circuit (MMIC). Spurious signals stemming
from hardware impairments deteriorate target detection perfor-
mance, but hardware-based mitigation is not preferred, given
the increased cost and size of the integrated circuits. Instead,
signal processing-based mitigation is favored. In this article,
an approach is proposed to mitigate hardware impairments by
parametric, model-based signal processing. For one particular
FMCW radar operating at 160 GHz, a behavioral model of
the radar device is developed, which accounts for the hardware
impairments. This device model is incorporated in the data
model of a maximum-likelihood parameter estimator that both
resolves target ranges and mitigates spurious signal components.
The mitigation performance and the improved robustness of
target detection of this approach in the presence of hardware
impairments are demonstrated by measurements.

Index Terms— Device model, dirty RF, frequency-modulated
continuous-wave (FMCW) radar, Hammerstein model, model-
based estimation, nonlinear model.

I. INTRODUCTION

RADAR sensors are an emerging technology for
autonomous driving or novel industrial, security, or med-

ical applications. Given the need for increased bandwidth (e.g.,
several GHz) for imaging in crowded environments, higher
frequency bands, such as the millimeter-wave spectrum, have
to be considered.

Inevitable hardware impairments, such as nonlinearities,
I/Q imbalances, or amplitude distortions, cause signal dis-
tortions, which result in, among others, deteriorated range
estimates [1]–[3] or false detection [4], [5]. For example,
the FMCW radar in [4] suffers from spurious signal com-
ponents. The large amplitudes of these spurious signal com-
ponents in the range profile make these indistinguishable
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from real targets, resulting in false detections. One possible
mitigation of spurious signal components is by additional
analog filtering of the transmit signal. However, given the
high frequencies and the demand for low cost and compact
realizations, the radar will be implemented in a MMIC [4], [6],
rather than in discrete hardware. Hardware-based mitigation
increases size and costs of the MMIC, which is not compatible
with a compact and low-cost realization.

An alternative to analog domain mitigation is mitigation
by signal processing in the digital domain. This saves on
hardware costs at the expense of an increase in computational
complexity. In communication engineering, signal processing-
based mitigation of hardware impairments is known as dirty
RF [7], [8], an expression which is adopted in this article
for radar applications. There is a paradigmatic difference
between communications and radar, though, which is rel-
evant for the application of dirty RF. In communications,
the information transported by the transmit signal is of interest.
Hence, dirty RF in communications strives to equalize the
received signal [9] in order to restore the actually transmitted
information. In contrast, radar applications have a system
identification aspect. The transmit signal is known and carries
no information, but the propagation channel is of interest,
i.e., parameters of the targets (e.g., target ranges) in the
propagation channel. Therefore, equalizing the received signal
is not a major concern. As a result, the dirty RF paradigm
known from communication engineering has to be modified
for accommodating the concerns of radar applications.

In this article, we will present an approach that combines
dirty RF with the estimation of target parameters. The mono-
static MMIC FMCW radar described in [10] will be taken
as an example for implementing and demonstrating the new
approach. We derive a behavioral model for the radar device,
which properly describes the effects of the radar hardware
on the received baseband signal. By incorporating this device
model in a maximum-likelihood (ML) parameter estimator,
mitigation of spurious signal components and estimation of
target ranges are jointly achieved. The mitigation of spuri-
ous signals prevents false detection of targets, making the
radar application more robust against hardware impairments.
Measurements show the mitigation performance and enhanced
target detection robustness.

This article is organized as follows: The problem under
consideration is presented in Section II, illustrated by mea-
surements in four scenarios. In Section III, distortion in the
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TABLE I

RADAR SETTINGS FOR THE MEASUREMENTS

TABLE II

RANGES AND RCSS OF THE PLACED CORNER REFLECTORS

FOR THE FOUR MEASUREMENT SCENARIOS

transmit signal, as caused by hardware impairments, is ana-
lyzed. A nonlinear, static device model will be subsequently
derived, parameterized, and validated in Section IV. In order
to account for frequency dependence and dynamic effects
in the radar device, the device model will be extended to
a dynamic nonlinear one. The model derivation and model
parameterization are presented in Section V. In Section VI,
measurements are used to compare the mitigation performance
and the enhanced target detection robustness with predictions
from the model. Section VII concludes this article.

The following mathematical notation is used to denote
scalars, vectors, and matrices: Scalars are italic letters
(m, . . . , M, . . . , τ ), column vectors are written as boldface
lower case (a, . . . , τ ), and boldface capitals correspond
to matrices (A, . . . ,�). The matrix operations (•)T and
(•)† denote the transpose and Moore–Penrose pseudoinverse,
respectively. The imaginary unit is j = √−1.

II. MEASUREMENTS AND PROBLEM STATEMENT

Calibration measurements, hence, measurements under
well-known settings and conditions, were conducted in an
anechoic chamber. As a radar system, the multiple-input
multiple-output MIMO FMCW radar presented in [10] has
been used, whereas only one channel has been captured and
processed. The basic parameter settings of the radar are shown
in Table I. Sequentially, three corner reflectors with varying
radar cross section (RCS) and distance are placed as targets in
front of the radar system. In total, four measurement scenarios
were set up. Table II summarizes the ranges and RCS of
the placed targets for the four measurement scenarios. Fig. 1
shows the radar system and two placed targets in the anechoic
chamber.

Because the radar device is monostatic (transmitter
and receiver antennas are closely located), strong leak-
age or crosstalk occurs. High-pass filtering is applied as pre-
processing step to suppress the corresponding beat frequencies,
and the analytic signal is calculated afterward. The range
profile (magnitude squared of the range spectrum) of an
example measurement with two targets is shown in Fig. 2.
The highest beat frequency peaks can be assigned to the target
ranges. Additional beat frequency peaks are visible, indicating

the presence of further scatterers/reflectors. However, these
beat frequencies cannot be assigned to the location of an
object or multipath propagation. Hence, it is concluded that
these beat frequencies are not due to scattering, such that they
are ghost targets. Ghost targets will be defined as beat frequen-
cies, which occur in conjunction with the beat frequency of a
true target. Due to the presence of multiple beat frequencies
for a single target, the number of targets may be overestimated
by a detector.

The ghost targets are hardware caused and, therefore, deter-
ministic and predictable. Hence, they can be accounted for
in the target detection step by, e.g., excluding the respective
peaks in the range profile. However, if a true target peak is
hidden or intersected by a ghost target peak, the true target
cannot be detected. Hence, this approach may fail in the case
of multiple targets. In [5], the occurrence of ghost targets was
tackled by limiting the bandwidth in a postprocessing step.
However, bandwidth limitation causes a decrease in range
resolution, such that this approach is also not appropriate.
Hence, an approach is required which: 1) detects the true
targets and 2) mitigates the ghost targets.

III. SIGNAL SYNTHESIZER ANALYSIS

A block chart of the transmit signal synthesizer, which
generates the linear FMCW transmit signal (also called
chirp or ramp), is shown in Fig. 3. A ramp oscillator (RO)
signal, which is a linear frequency swept signal, is upconverted
by mixing with a local oscillator (LO) signal [4]. The RO and
LO signals are assumed as perfect, such that the respective
signal models are

wRO(t) = URO · cos

(
π

BRO

TRO
t2 + 2π fROt + ϕRO

)
(1a)

wLO(t) = ULO · cos (2π fLOt + ϕLO). (1b)

The parameters BRO and TRO are bandwidth and sweep time
of the RO signal, respectively; and frequency fRO is the center
frequency. The LO frequency is denoted by variable fLO.
For the radar under consideration, the frequencies are:
BRO = 4 GHz, fRO = 10 GHz, and fLO = 58.5 GHz.
Phase terms ϕLO and ϕRO, and amplitudes ULO and URO are
the initial phase and amplitudes of the LO and RO signals,
respectively. The phase terms are omitted in the following for
sake of convenience.

Before the mixing step, the LO and RO signal are up
converted by multipliers in order to increase the bandwidth
(RO signal) and the center frequency (LO signal). Multipliers
are nonlinear devices, and hence their input–output relation
is a nonlinear transfer function. A common model for the
input–output relation of nonlinear devices is the memory-less
power series model [11], which is actually the Taylor series
approximation of the nonlinear transfer function. Applying the
power series model to the RO and LO signals yields

sRO(t) =
M∑

m=1

am · Um
RO · cos

(
πm

BRO

TRO
t2 + 2πm fROt

)
(2a)

sLO(t) =
N∑

n=1

bn · Un
LO · cos(2πn fLOt) (2b)
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Fig. 1. (a) Radar system and (b) two corner reflectors acting as targets in the anechoic chamber.

Fig. 2. Measured range profile according to measurement scenario 2 (see
Table II). Beat frequency peaks are present for the distance of the true targets
(square mark) and ghost targets (triangle mark).

with M and N the degrees of nonlinearity and am and bn the
power series coefficients. As a result, the output signals of the
multipliers are multiple harmonics of the input signals, rather
than just the upconverted signals for n = 4 and m = 2. In the
following, the summation limits will be omitted for notational
convenience.

Assuming an ideal mixer, the transmit signal becomes

s(t) =
∑

n

∑
m

am · Um
RO · bn · Un

LO

· cos (2π tn fLO) · cos

(
πm

BRO

TRO
t2 + 2πm fROt

)
. (3)

The assumption of an ideal mixer is not crucial, because a
nonideal mixer causes additional harmonics, which can be
accounted for by adjusting the degrees N and M of the
nonlinearities. Applying trigonometric identity1 yields

s(t) =
∑

n

∑
m

cn,m · [ cos
(
φ+

n,m(t)
) + cos

(
φ−

n,m(t)
)]

(4)

1cos x cos y = 0.5 · [cos(x − y) + cos(x + y)].

Fig. 3. Sketch of the signal generator, realized as an offset synthesizer [4].

with

cn,m = am

2
· Um

RO · bn · Un
LO (5a)

φ+
n,m(t) = 2π tn fLO + πm

BRO

TRO
t2 + 2π tm fRO (5b)

φ−
n,m(t) = 2π tn fLO − πm

BRO

TRO
t2 − 2π tm fRO. (5c)

Summarized, the transmit signal s(t) constitutes of multiple
FMCW signals, which are at different frequency ranges and
have different bandwidths. Fig. 4 shows the frequency-time
diagram of the transmit signal for nonlinearity degrees M = 6
and N = 3. The highlighted area and the colored lines show
the operating frequency range and the actually transmitted
ramps for the radar under consideration, respectively.

IV. NONLINEAR STATIC DEVICE MODEL

A behavioral device model can be derived by calculating the
baseband signal, while considering the transmit signal model
and the propagation model h(t). The considered propagation
model is [5]

h(t) =
∑

p

γp · δ(t − τp) (6)

with delay τp , which is proportional to the range rp of the
target [12], and weight γp , which accounts for attenuation.
The resulting baseband signal for the pth target is

x(t) = γp ·
∑
m1

∑
m2

∑
n1

∑
n2

ζ · cos[2π fbeat(t, τp)t + φ] (7)
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Fig. 4. Frequency-time diagram of generated FMCW signals for nonlinearity degrees of the RO and LO multipliers of M = 6 and N = 3, respectively. The
colored ramps indicate the transmitted ramps, and the yellow ramp is the wanted ramp. The orange highlighted area denotes the operating frequency band of
the radar.

with beat frequency fbeat(t, τp), ζ the power series coeffi-
cients, which are related to the power series coefficients of
the RO and LO multiplier; and term φ, which accounts for
remaining phase variations. Note that ζ , φ, and fbeat(t, τp)
depend on the summation indices, which were dropped for
notational convenience. The beat frequency is given by

fbeat(t, τp) = ±(n1 − n2) fLO ± m2
BRO

TRO
τp

± (m1 − m2) fRO ± (m1 − m2)
BRO

TRO
t . (8)

Auto Terms: For the auto terms (m = m1 = m2 and n =
n1 = n2), the beat frequency in (8) reduces to

fbeat(t, τp) = ±m
BRO

TRO
τp. (9)

Consequently, each delay τp causes multiple beat frequencies,
which depend on the nonlinearity degree m of the RO signal
multiplier.

Cross Terms: Considering the cross terms (m1 �= m2 and
n1 �= n2), the beat frequency varies over time. Only a
portion of the beat signal will remain in the baseband if the
beat frequency exceeds the low-pass cutoff frequency. Hence,
the cross terms result in short-time distortions, which are
broadband in the frequency domain, and hence, have only a
minor influence on the range spectrum. Therefore, cross terms
will be neglected.

So far, the nonlinearity degrees M and N have not been
clarified yet. Basically, they depend on the degree of non-
linearity of the multiplier, which is unknown. According
to the transmit signal model in (4), the generated FMCW
signals are at different frequency ranges, see also Fig. 4.
These frequency ranges are differently attenuated due to the
bandpass characteristic of the radar device. Hence, the radar
transmits only a subset of the generated FMCW signals. This
subset is identified from calibration measurements with a
single target because each peak in the range spectrum can be
clearly assigned to a generated FMCW signal. Accordingly,
the nonlinearity degrees are determined as N = 3 and M = 5.

Summarized, the receive signal consists of multiple beat
frequencies per delay, which are caused by the multiple
transmitted FMCW signals. A model for the baseband signal
in the presence of P targets and in the noise-less case is

x(t) =
P∑

p=1

γp ·
5∑

m=2

ζm · cos

(
2πm

BRO

TRO
τpt + φm

)
. (10)

A. Estimation of Power Series Coefficients

A complex-valued baseband signal will be considered to
estimate the power series coefficients. In the noise-less case
and the presence of P targets, the baseband signal is

x(t) =
P∑

p=1

γp ·
5∑

m=2

αm · exp

(
j2πm

BRO

TRO
tτp

)
(11)

with αm = ζm · exp(jφm) the complex-valued power series
coefficients. The complex weight γp accounts for the attenu-
ation [12] and remaining phase variations [13] due to propa-
gation. For a monostatic radar, the complex weight is given
by

γ ( fc, B)=
√

ρ

(4π)3 f 2
c c2

0(2τ )4
exp(−j2π fcτ )exp

(
jπ

B

T
τ 2

)

(12)

with center frequency fc, ρ the RCS of the target, and c0 the
propagation velocity. Because the transmitted FMCW signals
operate at different frequency ranges, the attenuation and
phase variations differ. Hence, a different weight γ has to be
considered for each beat frequency. Accordingly, the model
for the complex baseband signal becomes

x(t) =
P∑

p=1

5∑
m=2

αm · γm,p · exp

(
j2πm

BRO

TRO
tτp

)
. (13)

A model for the observation of K data samples, which are
stacked in vector y ∈ CK , and a single target is

y = E(τ ) · diag{γ } · α + n. (14)

The operator diag{γ } forms a diagonal matrix from the entries
of vector γ , and the matrix and vectors in (14) are given by

E(τ ) = exp

(
j2π

BRO

TRO
τ · t · mT

)
(15a)

γ =

⎡
⎢⎢⎣

γ (3 fLO − 2 fRO, 2BRO)
γ (2 fLO + 3 fRO, 3BRO)
γ (2 fLO + 4 fRO, 4BRO)
γ (2 fLO + 5 fRO, 5BRO)

⎤
⎥⎥⎦ (15b)

α = [α2, α3, α4, α5]T . (15c)

Vector n accounts for the measurement noise,
m = [2, . . . , 5]T , and vector t = [t0, . . . , K t0]T comprises
the sampling time instances, with t0 the sampling interval
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Fig. 5. Measured and predicted range profile for measurement scenario 2 (see
Table II). The parameterized power series model and the known measurement
settings (target ranges and RCSs) are used to predict the range profile.

of the ADC. Assuming proper complex, white and normally
distributed noise, an estimate of the power series coefficients
α is given by the best-linear-unbiased estimator (BLUE) [14]

α̂ = [E(τ ) · diag{γ }]† · y. (16)

A calibration measurement with a single target is used to
estimate the power series coefficients α.

For verification of the power series model, the measured
and predicted range spectrum for measurement scenario 2 of
Table II is shown in Fig. 5. The prediction is conducted by
using the estimated power series coefficients, and the known
target positions and RCSs, and plugging in to (13). A good
match of the peak height and peak position between mea-
surement and prediction can be observed. However, the peak
width does not match the measurements. The peak width
indicates the presence of dynamic effects [11], which are
due to the frequency dependence of, e.g., power amplifiers,
transmission lines, splitters, and so on. Furthermore, the peak
width varies for each beat frequency, because the correspond-
ing ramps are at different frequency ranges, and therefore,
undergo different parts of the frequency response of the
radar device.

Summarized, the power series model properly describes the
occurrence of multiple beat frequencies for a single scatterer.
Because the power series model is a nonlinear static device
model, amplitude, and phase distortion due to the frequency
response of the radar device are not accounted for. Hence,
a nonlinear and dynamic model becomes necessary in order
to properly describe the radar device.

V. NONLINEAR DYNAMIC DEVICE MODEL

Joint consideration of dynamic effects and nonlinearities
can be accomplished by the Volterra or Wiener theory [11].
Because the estimation of the Volterra or Wiener kernels is

Fig. 6. Block chart of the device model with Hammerstein model at bandpass.

complicated, simplifications are commonly employed. Here,
a Hammerstein model will be utilized, where the device
is modeled as a serial cascade of two subsystems: a static
nonlinear system followed by a dynamic linear system [11].
The static, nonlinear subsystem is described by a power series,
as described in Section IV. The dynamic, linear subsystem is
modeled by a linear time invariant (LTI) system. If differ-
ent LTI systems are considered for different powers of the
power series, the model is called generalized Hammerstein
model. Subsequently, the Hammerstein model will be consid-
ered to describe the radar device at bandpass and baseband
domains.

A. Hammerstein Model at Bandpass

A Hammerstein model at a bandpass domain is given by
combining the power series model of the signal synthesizer,
and the model presented in [5], which accounts for occurring
device dynamics at bandpass level. The model structure is
shown in Fig. 6. This model structure has a physical interpreta-
tion because the model components can be related to hardware
components and their behavior in the real device. However,
the measurements are at the baseband domain, such that the
Hammerstein model at the bandpass domain is hard to identify.
Therefore, a baseband model, which equivalently describes the
device influence on the received signal, is necessary.

B. Generalized Hammerstein Model at Baseband

In order to transform the bandpass model in Fig. 6 into
an equivalent baseband representation, several considerations
have to be taken into account. First, the nonlinearities of
the transmitter at bandpass can be equivalently represented
by nonlinearities of the receiver at baseband, because only
auto terms are considered at baseband and cross terms are
neglected. Second, the generated FMCW signals are at differ-
ent frequency ranges (see Fig. 4) and, therefore, are influenced
by different parts of the radar transfer function at bandpass.
Hence, each beat frequency at baseband is affected by a differ-
ent device dynamic. Finally, these different device dynamics
are assumed to be related to nonintersecting parts of the
radar transfer function at bandpass. Summarized, an equivalent
representation of the Hammerstein model at bandpass is given
by a generalized Hammerstein model at baseband, whose
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Fig. 7. Block chart of the device model with generalized Hammerstein model
at baseband.

block chart is shown in Fig. 7. The corresponding baseband
signal for P targets in the noise-less case is

x(t) =
P∑

p=1

5∑
m=2

αm · γm,p · Gm(t) · exp

(
j2πm

BRO

TRO
tτp

)
(17)

with Gm(t) the device dynamic at baseband. Note, that for an
FMCW radar, a convolution with an LTI system at bandpass
can be transformed to a multiplication with its frequency
response at baseband [15]. Hence, Gm(t) represents the device
dynamic, which effects the transmitted FMCW signal causing
the mth beat frequency.

Estimation of the model parameters αm and Gm(t) will be
divided into the estimation of the power series coefficients
αm (identification of the static nonlinear subsystem) and
determination of the device dynamics Gm(t) (identification
of the dynamic linear subsystem). The coefficients αm are
estimated by the BLUE, as stated in Section IV-A. Knowing
the coefficients αm , the input signal vm(t) to each system
Gm(t) is

vm(t) = αm · γm · exp

(
j2πm

BRO

TRO
tτ

)
. (18)

Estimation of Gm(t) from the output x(t), while knowing the
inputs vm(t), can be treated as the identification of a multiple-
input single-output system with p-canonical structure [16].
Because four beat frequencies (m = 2, . . . , 5) are present, four
independent measurements would be necessary to estimate the
device dynamic for all beat frequencies. However, if only
one calibration measurement is taken into account, more
unknowns than number of measurements would be present.
Hence, a parametric model with a fewer number of parameters
is required, in order to get a unique estimation result.

A parametric model for Gm(t) is given by the rational
form [17]

Gm(t) = xm(t)

vm(t)
= bm,0 + ∑Bm

r=1 bm,r · pr (t)

1 + ∑Cm
r=1 cm,r · pr (t)

(19)

with coefficients bm,r , cm,r ∈ C, and p(t) = j2π t . The
best suited number B1, . . . , BM and C1, . . . , CM of numerator

TABLE III

ESTIMATED NUMBER OF NUMERATOR Bm AND DENOMINATOR Cm
COEFFICIENTS FOR THE MODEL OF Gm(t) IN (19)

and denominator coefficients, and the coefficients bm,r and
cm,r itself have to be determined from a calibration measure-
ment. Estimation of the coefficients can be accomplished by
minimizing the sum of squared errors between measurement
and model [17]. However, minimizing the squared error with
respect to (w.r.t) the number of coefficients is not considerable,
because an increase of the model complexity always reduces
the squared error [17]. Hence, a criterion is necessary, which
validates the coefficient estimates in conjunction with the
number of coefficients.

The Bayesian information criterion (BIC) [16], which is
a tradeoff between model accuracy (sum of squared errors)
and model complexity (number of coefficients), will be used
here. In order to jointly estimate the best-suited number of
coefficients and the corresponding coefficients, the BIC has
to be minimized. Because minimization of the BIC w.r.t
all unknowns is a high-dimensional optimization problem,
sequential optimization will be used to reduce computational
complexity. For a known number of coefficients, the coef-
ficients are estimated, and the BIC is calculated. Subse-
quently, the BIC is minimized subject to the number of
coefficients. The genetic algorithm “ga” from MATLAB global
optimization toolbox is used to minimize the BIC subject to
the number of coefficients, whereas the system identification
toolbox function “oe” is used to estimate the coefficients
for a given number of coefficients. Because the number of
coefficients is integers, integer optimization can be applied.
A calibration measurement with a single target is used to
estimate the number of coefficients and the corresponding
coefficients itself.

The estimated number of the numerator and denominator
coefficients are shown in Table III. In order to verify the
device model, the measured and predicted range spectrum
for measurement scenario 2 of Table II is shown in Fig. 8.
The prediction is conducted by using the estimated model
parameters, and the known target positions and RCSs, and
plugging in to (17). A good match of the measured and
predicted range profile is obvious. Hence, the generalized
Hammerstein model properly describes the signal generation
and transfer characteristics of the radar device.

VI. MEASUREMENT-BASED VERIFICATION

An ML parameter estimator [14] is chosen to estimate target
ranges and path weights. Therefore, the vectors τ and γ

are introduced, which comprise the unknown delays τp and
complex weights γm,p of all targets, respectively. Assuming
proper complex, normally distributed and white measurement



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HÄFNER et al.: MITIGATION OF RF IMPAIRMENTS OF A 160-GHz MMIC FMCW RADAR 7

Fig. 8. Measured and predicted range profile for measurement scenario 2
(see Table II). The parameterized generalized Hammerstein model and the
known measurement settings (target ranges and RCSs) are used to predict the
range profile.

noise, the ML parameter estimator is given by the objective

τ̂ , γ̂ = min
τ ,γ

K∑
k=1

‖y(k) − x(k; τ , γ )‖2 (20)

with y(k) the sampled measurements and x(k; τ , γ ) the
sampled model (17), depending on the unknown delays and
weights. The number of data samples is K = 610. The
optimization scheme presented in [18] is used to minimize
the objective (20) and jointly determine the number P of
targets. A proper determination of the number of targets
(respectively, the order of the data model) is important for
the parameter estimation quality [19]. An over fitting, hence,
the estimation of more targets than are present severely dete-
riorates the estimation quality of the parameters of the true
targets [20].

The measurement scenarios 1, 3, and 4 of Table II will be
considered to validate the proposed approach. Table IV shows
the deployed target ranges and the correspondingly occurring
ghost target ranges, calculated from (9). Note that some target
ranges were chosen such that ghost peaks and main peaks
are close or intersecting in the range profile. For example,
in scenario 4, the main peak of the first target (2.87 m)
is close to a ghost peak at 2.73 m of the second target.
A similar situation is present for scenario 3. These situations
are worthwhile to consider in order to show the superiority
of the proposed approach against, e.g., peak detection. The
estimated target ranges, which are the wanted results of the
radar application, are shown in Table IV as “estimated ranges.”
A good agreement between deployed and estimated ranges is
obvious. Furthermore, the true number of targets is correctly
determined in each case. Hence, the estimator can cope with
the occurrence of ghost targets. In addition, the approach can

TABLE IV

DEPLOYED TARGET RANGES, RANGES OF OCCURRING GHOST TARGETS,
AND ESTIMATED TARGET RANGES FOR THREE MEASUREMENT

SCENARIOS OF TABLE II

detect targets even if they are hidden or intersected by ghost
targets in the range profile.

Fig. 9 shows the range profiles for measurement scenarios
3 and 4 of Table IV. In Fig. 9(a), the ghost peak at 1.5 m
has a higher amplitude than the true target peak at 3.81 m.
Hence, simple peak detection will detect the ghost peak first.
However, the ghost peak at 1.5 m is related to the true target
peak at 3 m, which is the highest peak in the range profile.
The highest peak in the range profile always corresponds to a
true target location. This is assured by the radar hardware,
as the signal synthesizer is constructed to synthesize the
corresponding ramp signal, and the hardware is optimized for
the frequency band of this ramp. Accordingly, the parameter
estimator works as follows: the highest peak is detected in
the range profile (detection step), and the location of all
corresponding ghost peaks is calculated using (9). Afterward,
the target peak and the respective ghost peaks are removed
from the measurements by plugging in the parameter estimates
in the device model (17) and subtracting the parameterized
device model from the measurements (mitigation step). As a
result, these peaks will vanish or at least become highly
attenuated in the range profile. Hence, the highest peak in
the remaining range profile must correspond to the next true
target. In Fig. 9, the predicted range profiles are calculated by
plugging in all estimated delays τ̂ and the estimated weights
γ̂ in the data model (17), and applying Fourier transform
afterward. A good agreement between predicted (red curve)
and measured (blue curve) range profile is obvious. Hence,
all ghost peaks were successfully predicted by the proposed
dirty RF scheme. In the remaining range profile, which is the
coherent difference of the measurements and the predictions,
no significant peak remains. Hence, the ghosts are properly
mitigated, and an overestimation of the number of targets is
circumvented.

Summarized, the ML estimator, in conjunction with the pro-
posed device model, properly detects all targets and mitigates
the ghosts by exploiting the developed device model. Hence,
this approach is more robust against the presence of ghost
targets compared with, e.g., peak detectors. Because the ghost
targets are mitigated, targets that are hidden by a ghost target in
the range profile become detectable. This is a clear advantage
compared with the methods which attempt to ignore ghost
peaks in the range profile.
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Fig. 9. Measured, predicted, and remaining range profiles for (a) measurement scenario 3 and (b) measurement scenario 4 of Table II. Ranges of the placed
targets are indicated by black dashed lines. The estimated delays and weights from each measurement scenario are used to predict the respective range profiles.

VII. CONCLUSION

A new model-based signal processing approach to cope
with spurious signal components in radar has been proposed,
and exemplary implement for a 160-GHz MMIC FMCW
radar. Spurious signals have been pointed out as a severe
problem, as they deteriorate the target detection performance
of the radar. The presented approach utilizes a ML parameter
estimator, which exploits a data model of the measurements.
The hardware caused spurious have been analyzed, and a
device model has been developed to account for them in
the data model. Measurements have been used to show the
superiority of the new processing scheme. The parameter
estimator is able to detect all targets and jointly mitigates
the spurious signal components, making the radar more robust
against hardware impairments. The proposed approach is not
limited to the exemplary considered radar, as it can be applied
to each radar by developing an appropriate device model.
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