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Abstract—Have you read everything about direction-of-arrival
estimation in textbooks but are you still uncertain how to
realize it in practice? This tutorial-like paper will help to link
the theory with a practical approach for direction-of-arrival
estimation using mm-wave radar systems and it deals with arising
challenges. Step by step, it is explained how to move from the
measured time domain data to the estimated angular position of
the target. Since the target angle estimation is usually carried out
after range-velocity processing, the required pre-processing steps
are described. The assessment criteria to form the relationship
between array design and radar performance are expressed with
the Rayleigh criterion for angular resolution and the ambiguity
function as a measure for the unambiguous angular range. An
in-depth instruction on how to carry out the sensor calibration
is provided. Besides the choice of a proper calibration object,
the required number of measurements and signal-to-noise ratio
related issues are considered and supported by measurement
results. The discussion of single- and multi-target measurements
with the calibrated sensor concludes this work.

I. MOTIVATION

In the last decade, mm-wave radars gained a strong interest
in the scientific community. The huge advancements in the
semiconductor technology and the cost-effective development
of monolithic microwave integrated circuits (MMIC) for the
generation of the high-frequency signal allowed the mass
production of radar transceivers. In particular, nowadays mm-
wave radar sensors are well-established as key sensor technol-
ogy for many automotive [1], [2], civil [3], [4], and industrial
[5], [6] applications. At the present time it is even possible
to simply buy state-of-the-art off-the-shelf radar platforms
for research, educational purposes, or rapid testing [7], [8].
The plug-and-play era of mm-wave radars seems just getting
started.

Millimeter-wave radars are able to provide precise distance
and velocity measurements even in poor visibility or harsh en-
vironmental conditions, where the performance of other sensor
technologies starts to decrease [1]. Moreover, thanks to the
short wavelength they show appealing compact dimensions.

In addition to range and velocity, mm-wave radar sensors
typically employ more than one receiving channel to get also
the angular position of the target.

In most of the applications, the estimation of the angular po-
sition of the target, i.e., direction-of-arrival estimation (DoA),
is performed with digital beamforming on the receiver side,
since the use of mechanical scanning or phased array systems
is too expensive. In particular, the target angle estimation is

carried out usually after the range-velocity processing, and
it is necessary to separate targets that share the same range-
velocity bin. Thus, the DoA estimation is rather independent of
the radar waveform and modulation scheme, while it is strictly
related to the properties of the receiving antenna array.

In the last years the use of multiple-input multiple-output
(MIMO) radars became a popular solution to increase the
angular resolution of the radar sensor, thanks to the larger
virtual aperture that extends the physical aperture of the
receiving array. Some examples of mm-wave MIMO radars
can be found in [9], [10], and [11].

Processing the signal received by a (virtual) receiving array
of antennas for the purpose of angle measurements is a well-
established topic in both the antenna and signal processing
communities [12]. A number of different approaches have
been developed over the last decades; some of them have
been summarized for example by [12] and [13]. However,
the antenna engineer that tackles for the first time the array
processing with the help of state-of-the-art mm-wave radars
could feel overwhelmed while approaching as a newbie a DoA
estimation problem. A number of practical questions might
come to mind that can rarely be quickly answered by most of
the scientific literature.

This paper guides the reader towards an efficient DoA
estimation using state-of-the-art mm-wave radars. A practical
approach is given. Step by step, starting from the very basic
pre-processing steps, it explains how to practically perform the
DoA estimation and which crucial aspects must be considered,
too. For example, this paper tries to explain why the calibration
of the sensor plays a significant role and how to carry it out.
Moreover, some useful practical hints are given, for example
to save time and processing effort during the calibration and
angle estimation phases. No deep radar signal processing prior
knowledge is required to follow this tutorial, and it is based
on a descriptive rather than formal approach.

This paper is organized as follows. Section II presents
first of all the required pre-processing steps on the measured
time domain radar signal. Afterwards, the signal model is
introduced in Section III. Two different simple techniques
for the DoA estimation are shown, too. Section IV describes
some useful criteria to assess the performance of the an-
tenna system with regard to the DoA estimation problem.
The calibration procedure and all the related challenges are
reported in Section V. Some practical measurement examples
are given in Section VI. Finally, the conclusions will be drawn
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Fig. 1. Pre-processing chain for extracting the steering vectors of possible targets for a standard multi-channel radar using chirp-sequence modulation.

in Section VII.

II. PRE-PROCESSING CHAIN

The angular information of a target is present in the reflected
signal in the form of the phase relations between the receiving
channels. For the DoA estimation, these phase relations have
to be extracted from the received radar signal.

Fig. 1 shows a conventional pre-processing chain for calcu-
lating and extracting the phase relations of possible targets
with a standard multi-channel radar using the well-known
chirp-sequence modulation [14], i.e., sending multiple very
short frequency ramps. The targets manifest themselves as
high amplitude values in certain range-velocity cells, each
containing one or more target signals, that share the same
range and velocity, but separate angular information.

The pre-processing chain starts with the sampled base-band
beat signals in time domain for each ramp on each channel
which — for a single target — manifest themselves as sinu-
soidal waves. These beat signals undergo — for each channel
separately — a series of pre-processing steps before being
converted to the range-velocity domain by means of a two-
dimensional discrete Fourier transform (2D-DFT), resulting in
one range-velocity matrix for each channel. The exact pre-
processing steps depend on the respective scenario, but usually
involve some kind of windowing function — for example
a Blackman-Harris window [15] — to suppress unwanted
sidelobes introduced by the DFT. Depending on the radar
system architecture, additional pre-processing steps in the time
domain may be performed, or zero-padding can be used to
smooth out the resulting range-velocity data.

After this step, possible targets — appearing as high abso-
lute amplitude values in specific range-velocity cells — still
have to be extracted from the range-velocity matrix before
feeding them into the DoA estimator. This is mostly done to
reduce computational effort by discarding cells in the range-
velocity domain, which most likely do not contain any targets.

For this reduction, the three-dimensional matrix from the
previous steps (range-velocity-channel) first has to be accumu-
lated into a single range-velocity matrix, which still includes
information from all channels. This can be accomplished by
various ways, two of them being:

« Non-coherent integration: Here, the phase information
of the complex amplitudes in the range-velocity cells
are discarded and the absolute values are summed up
along the channels [16]. The advantage of this approach
is that amplitudes in target cells are contributing equally

throughout the channels regardless of their phase rela-
tions. The downside, however, is an increase in noise
artifacts due to them not experiencing any averaging
because of the missing phase.

o Coherent integration: By summing up the complex am-
plitude values of the range-velocity cells along the chan-
nels, the aforementioned downside of accumulated noise
is reduced due to the random nature of the noise process.
However, this also leads to the coherent summation of
amplitudes for legitimate target cells. This can potentially
decrease the resulting summed-up amplitude, because the
values do not add up ideally due to the naturally occuring
phase progression between the channels.

The accumulated matrix then provides the base for the
extraction of possible target cells. This usually is accomplished
by applying one or more constant false alarm rate (CFAR)
algorithms to separate legitimate targets from noise and clutter.
Often, an ordered statistics (OS)-CFAR algorithm, which
provides good noise estimation in the presence of multiple
targets and clutter edges [17], is deployed either in range, or
velocity dimension, sometimes in both.

As a final extraction step, a peak search is usually performed
in one or two dimensions to find the actual velocity and range
of individual target points. This becomes necessary due to the
non-idealities of the sampled time signals and the properties
of the DFT distorting the ideal frequency peak of a signal.

With the acquired knowledge of the target cells in the
range-velocity domain a cut through the non-accumulated
channel matrices at their respective range-velocity positions is
performed. For one target cell, this results in a vector of phase-
progressing complex amplitudes describing the steering vector
or — in the case of multiple targets in the same range-velocity
cell — superimposed steering vectors, which subsequently is
fed into the DoA estimator.

III. SIGNAL MODEL

Before going into the details of the DoA estimation, it
is important to mathematically describe the steering vector
obtained at the end of the pre-processing chain sketched in
Fig. 1. Let M, be the number of receivers placed in one-
dimensional lattice on the x-axis as in Fig. 2. If plane waves
impinge from the target, the direction of propagation of the
incoming signal, namely the angle ¢ drawn in Fig. 2, is
the same for each element of the array. Moreover, only the
azimuth plane is of interest in this work. However, it is possible
to generalize the DoA estimation towards a two-dimensional
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Fig. 2. Arrangement of the M, elements of the arbitrary linear array. The
angle ¥ is defined within [—90°,90°].

problem and to retrieve thus both the azimuth and elevation
angles of the target. An example of a two-dimensional radar
system has been given in [18].

With these assumptions it is then possible to write the
steering vector of the receiving array y(¢}) for the angular
direction ¥ as

e j27r§—[1) sin ¥
y() = : ; ey

ei2m e sin )

where )\ is the free-space wavelength, and xj; represents the
position of the array element with k = 1,..., M,. If the radar
sensor is a MIMO radar, then for DoA estimation purposes it
is necessary to consider the steering vector associated to the
virtual array, that can be calculated as the Kronecker product
of the transmitting and receiving array steering vectors [19],
or equivalently, by applying the vectorization to the product of
transmitting and receiving array steering vectors [20]. The use
of a MIMO system does not affect the calibration effort or the
implementation of the angular estimation algorithm compared
to the non-MIMO case. The study presented in this tutorial
applies to both cases.

Finally, by considering a number of different directions of
interest ¥, it is possible to collect the steering vectors y(1J;)
to build the steering matrix Y .

A. Deterministic Maximum Likelihood Approach

This tutorial explains first of all the deterministic maximum
likelihood approach (DML), where the word deterministic
comes from the assumption that the received signal waveforms
are deterministic and unknown [13]. The DML method be-
comes quite intuitive and quick to use for a single target and
single snapshot scenario. Focusing on the single target case
does not narrow the analysis. As shown in the previous sec-
tion, the DoA estimation takes place after the range-velocity
processing. It is however quite a reasonable assumption to say
that only a single target occupies a range-velocity bin.

The basic idea of the DML approach is to compare the
actual measurement results with a reference calibration matrix.
This comparison can be mathematically calculated by means
of a cross-correlation. Indeed, the direction that maximizes the
cross-correlation, i.e., that returns the highest similarity, gives
the estimated DoA V.

The starting point for the DoA estimation is the calibration
of the radar sensor to take into account the typical deviations
from the ideal designed antenna system, e.g., due to fabrication

errors. Indeed, because of the small wavelength at mm-wave
frequencies, the fabrication inaccuracies can potentially lead to
non-negligible phase errors. This point will also be further ex-
plained in Section V. The results of the reference measurement
can be saved into the calibration matrix C with dimensions
M, x N, where N is the number of samples in the azimuth
plane where the calibration measurement has been taken. In
other words, the generic element of the matrix cy; is a complex
value that describes the collected reference measurement result
at the end of the pre-processing chain — see Fig. 1 — for the
angular position ¥; and for the k-th channel.

More formally, the measurement result for an unknown
direction can be saved in the vector a, which is a column vec-
tor with dimension M,.. Then, the cross-correlation between
measurement and calibration results is given by

B |CH (9) - a|
C@) lllal”
where the symbol (-)* denotes the complex conjugate (Her-

mitian) matrix. The dimension of the column vector v is V.
Finally, the estimated DoA is given by

v (0) 2)

Vet = argmax v (9) , 3)
9

where the function arg max gives the angular position ¢ at
which the cross-correlation reaches the maximum.

B. Discrete Fourier Transform Approach

With this simple implementation of the DML procedure
presented above it is possible to estimate the position of
the target only at the very same points in azimuth, where
the calibration results have been collected [21]. Hence, for
this basic approach — without any additional processing step
— increasing the number of measurement points during the
calibration is beneficial to the purpose of the DoA estimation.

However, for many practical applications, and in particular
for the mass-production of mm-wave radar sensors, collect-
ing a large number of measurement points might cause a
significant increase in the cost and time dedicated to the
calibration of a single sensor. This problem will be become
even more clear to the reader after the detailed explanation of
the calibration procedure that will be presented in Section V.
Moreover, typically a large calibration matrix with a sufficient
number of measurement points should be saved and then
handled by the signal processing unit of the radar system, for
example as a lookup table, and this makes the computational
effort of the angle estimation larger. Hence, to reduce the
calibration effort a second approach is here introduced, which
exploits the Fourier transform properties.

This method becomes quite easy to follow by considering a
uniform linear array (ULA) as receiving element. In particular,
the similarity to the well-known frequency domain analysis
of time signals must be recalled for easily understanding
the beamforming and DoA estimation problems. Indeed, it is
possible to say that the ULA collects the spatial samples of
a certain distribution, whose Fourier transform — in this case
calculated by means of a DFT — gives the receiving array
beam pattern [22].
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More formally, the spectrum, i.e., the vector v (¢), can be
obtained by collecting the elements relative to the angle ¥,,

M,—1 '
Un = Z ak'eiﬂﬂﬁrk? 4)
k=0
with
12X 1M
¥, € arcsin [_QA(;’ QAOm} , (®)]

where Ax is the constant spacing between adjacent antenna
elements in the ULA. The spatial samples aj contained in
the measurement vector a are described by the index £k,
which in turn represents the k-th receiving channel. The
index n indicates the spacing of the frequency vector v. The
boundaries of (5) are strictly related to the angular range
where the DoA estimation can be successfully performed
without experiencing any ambiguity. This point will be further
discussed in Section IV. Finally, it is also important to remark
that in v,, there is no linear dependence on the angle 1, but
on sin 1, similarly to (1).

Calculating the DFT of the measurement vector a is thus
sufficient to solve the DoA estimation problem. Usually, the
Fourier transform is calculated with a reasonable zero-padding
which results in a smoother-looking spectrum. The typical
reciprocal property of the Fourier transform applies also here,
so that a wide receiving array generates a beam pattern with
a narrow main beam, and vice versa. The estimated DoA e
corresponds to the maximum of the DFT, which gives the
position of the main beam in the calculated beam pattern.

Like the previous approach, a calibration is required for
the DFT method, too. The non-ideal antenna system must
be indeed characterized in order to correctly calculate the
DFT, and thus the beam pattern. In particular, the fundamental
assumption for using the DFT is that, as reported in (1), for
the angular direction of 0° the associated value in the steering
vector should be 1 for all the receiving channels. Any deviation
from the ideal 0°-value must be compensated.

To summarize, before calculating the DFT, the measurement
results must be corrected with the values collected during
the calibration for the purpose of obtaining the correct beam
pattern.

IV. ASSESSMENT CRITERIA

The angular resolution is a fundamental assessment criterion
for DoA estimation problems, in particular to understand
whether the antenna system is able to identify two closely
spaced targets. From the antenna array theory it is well
known that the resolution properties are directly related to
the array aperture. A unique widely accepted definition of
angular resolution is not available in the literature, however,
the Rayleigh criterion has often been used as an important
reference metric [1]. The Rayleigh criterion relates the angular
resolution A¢ in degree to the array (virtual) aperture L as
follows

180° Ao

1.2229 (6)

A
v T L

Thus, as expected also from the properties of the Fourier
transform mentioned in the previous section, the larger the
aperture L, the better the resolution. Alternatively, the angular
resolution of an antenna system can also be defined as a 3-dB
beamwidth or half power beamwidth. The latter will be used
in the experimental part of this tutorial as separation criterion
to identify two targets.

An unambiguous estimation of the angular position of the
target is another fundamental requirement for successfully
solving a DoA estimation problem. In this case, the term
unambiguity describes the ability of the radar antenna system
to uniquely distinguish the DoA of the signal reflected back
by the target. This phenomenon comes directly from the well-
established concept of grating lobes, which has been nicely
explained for example in [23], [24]. Indeed, a grating lobe in
the receiving array beam pattern causes an ambiguity in the
angular estimation.

This concept has been formally described in [25], where
it is possible to find the definition of the ambiguity function
X(9;,0;), here recalled for the sake of completeness:

_ |yH (Vi) -y (ﬂj”
Iy () Iy () I

It is the autocorrelation of the receiving array steering vector
calculated at the positions ¥J; and 1J;, respectively. An ambi-
guity occurs when it is not possible to distinguish between the
directions ¥J; and ¥;. The autocorrelation should indeed return
the maximum value of 1 only if ¥; = ¥;, and ideally O in all
the other cases.

Usually, the ambiguity function can be plotted as a three-
dimensional plot, where the coordinates = and y describe the
angles ¥; and ¥, while the z-coordinate depicts the magnitude
of the function [26], which is always bounded between 0 and 1.

A simple example of the ambiguity function plot can be
seen in Fig. 3. The results refer to an ULA of isotropic
radiators with six elements spaced Ay apart. The highest value
of the autocorrelation has been achieved not only along the
main diagonal, where ¥;=1;, but also for some other angular
directions, leading thus to ambiguities. The white box at the
center of the plot highlights the area where no ambiguities
occur. As known from the array theory, to avoid ambiguities
in the estimation of the direction ¥} the following equation
must be fulfilled [24]:

X (U5, 7;) (N

-7 < QWg sind < 7. ®)
Ao
In principle, if the field of view (FoV) of the radar is confined
to the ambiguity-free region, then it is ideally possible to
estimate correctly the direction of the target. On the other
hand, if the FoV is larger than the ambiguity-free region, then
it is possible that some measurements can lead to a wrong
DoA estimation.

Avoiding grating lobes is a necessary, but not a sufficient
condition for estimating the DoA of a target. For practical
applications it is also important to avoid a high sidelobe level.
Indeed, high sidelobes could cover for example some weaker
targets present in the same range-velocity cell, making thus
their correct estimation difficult. High sidelobes can also be
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Fig. 3. Plot of the ambiguity function for an ideal six-element uniform linear
array with a spacing equal to Ao between the elements. The dotted white area
describes the ambiguity-free region where no ambiguities occur.

called quasi-ambiguities. Typically, it is possible to adapt
the definition of ambiguity-free region to take the quasi-
ambiguities also into account [27]. For example, a threshold
for an acceptable sidelobe level can be defined, according to
the specific application, and then the ambiguity-free region
is the area where the ambiguity function x (¥;,7;) reaches
values below that threshold.

V. CALIBRATION

As already briefly mentioned in Section III, due to differ-
ences in the transmission line lengths within the radar systems,
manufacturing uncertainties, variances in RF components,
different power distribution on the transmit channels, there are
amplitude and phase variations between the different transmit-
receive channels. These effects result in a deviation from the
ideal signal model in (1), described in Section III. The signal
model in (1) can be adapted to a more realistic one, which is
described by

Al (ﬂ)ej<27r.§—é sin 19+1j)1)
y(0) = : )
PR .

with the phase offset v, and the amplitude Ay, for the virtual
channel k. Both the amplitude term and the phase are angle
dependent. The amplitude term can be neglected if there are no
large differences in the amplitude with respect to the incident
wave angle. This is usually fulfilled if the antenna is not
focusing in the radiation plane — exemplary in the presence
of a focusing lens — where the DoA estimation is performed.
In the following, the amplitude is neglected.

For the calibration, let us assume a point-like target in the
far-field of the antenna array with a known azimuth angle
Y=1y. For a plane wave impinging the antenna array the phase
at the receive antenna is described by the exponential term in
the signal model of (9). By applying an angle dependent cali-
bration measurement the phase term t(J) =275t sind + ¢y,
can be determined. This can be achieved by a calibration
measurement as a function of the azimuth angle ¥, see Fig. 4.

There are basically two calibration setups:

A calibration object

2.
P

]

radar

Fig. 4. Possible calibration setup. Either the calibration object is rotated
around the radar (1.) or the radar is rotated and the calibration object is
located at fixed location (2.).

« Rotating calibration object: The radar stays fixed and
the calibration object is rotated around the phase center
of the radar antenna. This is the most intuitive approach
but requires a very accurate positioning system with a
large size, which is difficult to realize in practice.

o Rotating radar: The same result can be achieved by
rotating the radar around its antenna phase center point.
This is approximated by a rotation around the center
of the antenna frontend. This second approach is more
accurate and realizable in practice as it can be done
using a stepper motor rotating the radar. Thus, this case
is considered in this paper.

As the calibration is conducted for discrete angular step
sizes, this results in the matrix C' and can be directly applied to
the DML of (2). Furthermore, the non-idealities of the antenna
array and the phase offsets are included within the calibration
measurement.

By only considering the phase of the calibration measure-
ment with respect to the first antenna element, this results
in the phase progression curves, see Fig. 6. They behave
according to the exponential part of the signal model in (9),
which are straight lines if visualized as a function of sin .

In the following some key aspects to perform a reliable
calibration are discussed.

A. Measurement System

An experimental 77 GHz MIMO radar sensor [11] is used to
illustrate the different calibration effects and the measurement
examples. The time domain data are directly sampled with a
sampling frequency of 20 MHz and saved for a detailed signal
processing later on. The bandwidth is set to 2 GHz resulting
in a range resolution of 7.5 cm. Four transmitters and eight
receivers form a uniform linear array with a %-spacing. The
virtual aperture has a length of 15.5 Ay and with (6) this leads
to an angular resolution of 4.5°. Each single physical antenna
element, namely the transmitters and receivers, is an eight-
element series-fed patch antenna array using the substrate
RO3003. To permit the easy replacing of different antenna
frontends, the antenna structure is connected to a waveguide
transition simply allowing the use of different antenna setups
as shown in Fig. 5. To cover a wide angular range in azimuth,
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Fig. 5. Picture of the antenna frontend with the four transmitters and eight
receivers forming a uniform linear virtual array with a %’—spacing between
adjacent elements.

the antenna array is focused only in the E-plane and has
a single patch characteristic in the H-plane. The calibration
as well as the measurement examples are carried out in an
anechoic chamber.

B. Influence of the SNR

In the following, the influence of the signal-to-noise ra-
tio (SNR) on the calibration is discussed. The SNR in a
measurement is estimated using the mean of all samples not
classified as a target by the CFAR and the power level of
the current considered target. In Fig. 6, the phase progression
over the calibration angles is shown. The used calibration
objects are corner reflectors, which differ in their radar cross-
section (RCS). For Fig. 6 (a), a corner reflector with an RCS
of 6.7dBsm is used. This results in a measured SNR value
of 32dB, which is obtained by non-coherent integration of
the receive channels. As the value for the SNR is high, the
phase curve is smooth and shows a linear trend over a wide
angular range. The phase curve is more noisy for large angles,
which results from the choice of the antenna element. For the
used antenna element, the considered angular range can be
confined to arcsin (+0.9) &~ +64°, which is the linear region
in Fig. 6 (a).

In contrast, Fig. 6 (b) shows the same phase plot for a corner
reflector with an RCS of —16.4dBsm and an SNR value of
11 dB. The reduced SNR leads to the phase plot becoming less
smooth and to a smaller angular range, where reliable results
can be acquired.

C. Choice of Calibration Objects

There are several calibration objects, which might be used
for the setup in Fig. 4. Commonly used calibration objects
are corner reflectors, spheres, and cylinders. They are usu-
ally fabricated from well-reflecting metals. These objects are
most suitable as their radar cross-section, which describes
the amount of reflected power, can be analytically described.
Additionally, their RCS is very constant for a large angular
range.

In the following, only the sphere is compared to the corner
reflector. Considering a sphere and assuming that the sphere
diameter D is much larger than the wavelength \g, its RCS is
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Fig. 6. Measurement of the phase progression over the calibration angle for
some receive channels relative to the first receive channel. In (a), a high SNR
of 32dB leads to a smooth line for a wide angular range, in (b), a low SNR
of 11 dB results in a noisy phase relation and a smaller angular range, where
reliable results can be obtained.

the projection of its cross sectional area. In contrast, the RCS
of the corner reflector can be described by

4
4 s
Ocorner = ?@7 (10)
0

with the outer edge length a. For an exemplary RCS=0.1m?,
at 77GHz, the corner reflector has an outer edge length
a=3.47 cm, whereas a sphere requires a diameter D=25cm.
The RCS of the corner is frequency dependent and increases
with frequency.

In order to conduct a reliable calibration, it is reasonable
to place the calibration object in the far-field of the antenna.
Additionally, the antenna array should also be in the far-field
of the calibration object. Only for these cases plane waves can
be assumed and (9) is fulfilled. The far-field distance R can
be defined according to [28] by

2

L
R>2—

v (11)
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The size L is the largest value between the antenna array size
and the size of the calibration object.

In practice, corner reflectors are mostly used as a calibration
object in the mm-wave range as it is easier to fulfill the far-field
condition in (11). For the exemplary corner reflector with the
edge length a=3.47 cm and the corresponding sphere with the
diameter D=25 cm, the far-field condition is fulfilled at 62 cm
for the corner reflector and at 32.7 m for the sphere, which is
difficult to realize with sufficient SNR, see Section V-B.

D. Limited Number of Angular Steps: A Faster Calibration

The DML estimation can only be applied to discrete azimuth
angles for which a calibration exists, cf. Section IIl. The
reasonable number of steps is determined by the resolution of
the array given by (6) and the possible ambiguity-free region
defined by (8). To allow a precise DoA estimation, the step
size is set to 0.5°. The ULA spacing is % which results in
an ambiguity-free region of +90°. As the antenna consists of
single elements, their radiation pattern must also be taken into
account. As mentioned for the SNR considerations shown in
Fig. 6 (a), the phase trend is linear in the domain of roughly
sin() € [—0.9,0.9] leading to a DoA range of +64°. Together
with the small angular increment this would result in 257
different calibration measurements to determine the steering

matrix C for the DML estimation.

In order to reduce the number of required measurement
points for the steering matrix C, the key idea is to determine
the phase offsets 1, of (9) for each single channel and to
compensate them. This allows to create the steering matrix
Y based on model (1) for a single steering vector without
phase deviation. In contrast to the measured matrix C, the
created ideal steering matrix Y does not contain any noise
and, therefore, leads to a smoother DoA result. In addition, the
angular step size can be chosen as small as desired without
increasing the measurement effort. Moreover, the removal
of the phase offsets is for the application of the Fourier
transform based DoA estimation also mandatory as mentioned
in Section III.

In theory only a single calibration measurement for a target
at 0° would be sufficient for the determination of the phase
offsets 1. As it is affected by noise, an averaging with several
measurements should be considered. Instead of repeating the
evaluation of a target under 0°, a certain angular range is
considered. The phase difference v, 1 (9¥=0°) for each channel
with respect to the reference channel, e.g., the first one, is then
determined by linear regression. The influence of different
calibration ranges is depicted in Fig. 7. The overall phase
trend is ideally approximated with a wide angular range (),
but also a reduced range (----) already leads to a good
approximation. It must be ensured that the phase trend is a
straight line and no phase jumps occur. Therefore, the step
size for this smaller calibration domain is defined so that the
maximum relative phase progression between two calibration
steps is much smaller than £180° to take phase noise into
account. A step size of 0.5° leads to a phase progression
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Fig. 7. Instead of measuring the whole angular range ( ), smaller ranges
are used for the linear regression and compared. The phase value at 0° is
the phase difference Ao 1(9=0°) between the second and the reference
channel.
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Fig. 8. Calibration with a too large step size of 2° leading to phase jumps
preventing a reliable linear regression.

between two calibration angles of

A’(/}max = 3600£

Ao

for the maximum progression between the first and last virtual

channel. For an insufficient calibration step size of 2° the

maximum phase progression is £194.7° leading to phase
jumps as can be seen in Fig. 8.

With the determined phase differences 1y 1(9=0°) each

single channel is corrected in time or frequency domain with

13)

After calibration, the Fourier transform based DoA is possible
as well as the creation of the steering matrix Y, which is later
referenced as ML ideal.

For a non-ULA array, the DML approach is the easiest
choice, as the exact element position is not required. In case
of the Fourier transform, either the Fourier transform must be
adapted to operate with non-equidistant samples or the missing

(sin0.5° — sin0°) ~ £48.7°  (12)

5 = spe IAYRa(9=07)
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element positions with respect to the ULA should be assumed
to be zero.

VI. MEASUREMENT EXAMPLES FOR DOA ESTIMATION

Two measurement scenarios are presented to highlight dif-
ferent aspects of the DoA estimation. For a single target
scenario the influence of the SNR in the calibration on the
DoA estimation is shown. In the case of two close targets the
three different angle estimation approaches are compared.

A. Single Target Scenario: Influence of the SNR in Calibration

The DoA estimation for a single corner reflector under
20° is shown in Fig. 9. With the DML estimation (——) the
expected DoA is extracted. For angles larger than |J|>64° the
DoA estimation starts degrading. This behavior is expected as
the phase trend in Fig. 6 (a) is stable for the same angular
domain. This is the limitation of the single antenna element
of the evaluated array. The sidelobe level is as expected
at approximately —13dB as no window is applied, which
coincides with the theory.

The same DoA estimation is once again performed with
the calibration data with less SNR of Fig. 6 (b). Although
the DoA can be extracted, the resulting angular spectrum is
noisy (----). The loss in SNR should be avoided as additional
possible weak targets in the same range-velocity cell could not
be detected.

The phase trend is interpolated, and the time domain data
is calibrated to allow the application of the ideal steering
matrix Y. With this matrix the DML estimation is once
again performed (----). The resulting angular spectrum has
roughly the same shape as the DML approach based on the
measured steering matrix, although it is smoothed and has
lower sidelobes.

B. Two Close Targets: Performance Comparison

Two corner reflectors of equal size are placed in the same
radial distance with a separation of 5°, which is larger than

norm. power in dB

L

—— DML ----DML ideal ——-- DME weak SNR

—60 —40 -—-20 0 20 40 60 80

¢ in degree

Fig. 9. Measurement of a single target with the measured steering ma-
trix ( ), the idealized matrix (----), and the steering matrix obtained
of a weak SNR target (—---).

Fig. 10. Measurement setup showing two close corner reflectors with the
same radar cross-section. The experimental radar sensor is mounted on a
rotary stand visible in the background and shown as an insert.

the theoretical angular resolution of 4.5°. This measurement
setup and the experimental radar sensor mounted on a rotary
stand is shown in Fig. 10. The insert is a close-up of the radar
sensor with the antenna frontend. The DoA estimation is per-
formed without knowledge or determination of the number of
presented targets. Thus, the three different DoA algorithms are
applied without any modification and the results are depicted
in Fig. 11 to show that close targets can be distinguished.

The DoA based on the measured steering vector (——)
shows once again at the edge of the evaluable range the
limitation of the antenna elements. The drop in amplitude
between the two targets is much larger than 3 dB, which is
considered as the separation criterion.

The exploitation of the idealized steering vector (----) has
— as in the single target case — less ripples compared to the
normal DML approach. The steering entries for the edge of
the evaluable range are calculated based upon (1), hence they
show no artifacts.

The time domain data is calibrated, and the Fourier trans-
form using a zero-padding to 256 values is applied for DoA
estimation (----). This approach yields the same result as the
idealized steering vector (- ---). The reason is, that the Fourier
transform is the cross-correlation of the measured steering
vector and the complex sinusoidal ideal steering matrix similar
to the DML approach.

VII. CONCLUSIONS

A practical and straightforward tutorial for DoA estimation
with state-of-the-art mm-wave radars, supported by measure-
ments on the basis of a 77GHz MIMO radar sensor is
presented. For DoA estimation, the sensor calibration is a key
task, and a step by step description is provided. Different
aspects influencing the quality of the calibration and the
reliability of two basic DoA estimation techniques, the DML
and the DFT approach, are discussed. Especially the effect of
the SNR and the direct related choice of a proper calibration
object on the estimation is shown. Measurements with an array
with a theoretical angular resolution of 4.5° are performed.
For a scenario with two targets in the same range-velocity bin
separated by only 5°, the measurement results show that the
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Fig. 11.
matrix (

Measurement of two close targets with the measured steering
), the idealized matrix (- - --), and the Fourier transform (----).

targets can clearly be distinguished and this verifies the here
presented procedure.

This paper gave a practical overview of the DoA estimation
with mm-wave radars. Further readings about additional DoA
estimation techniques can be found in [13], [29] such as the
Bartlett beamformer maximizing the power of the direction of
arrival, Capon beamformer minimizing the power contribution
by noise, or subspace-based methods such as multiple signal
classification (MUSIC). The here discussed ambiguity function
as an assessment criterion has been introduced for single-
target scenarios. In order to extend the ambiguity function
towards higher orders the reader can refer to [30]. Using time-
division multiplexing (TDM) to achieve orthogonal signals
for MIMO radars, special care must be taken in the case of
moving targets, which lead to phase errors and can result in
inaccurate or unusable angular estimation. Either overlapping
elements [31] or an adaption of the DFT [32] can be used
to overcome this issue. Last but not least, sparse antennas
can be employed to enhance the angular resolution while
maintaining a limited number of transmitters and receivers.
Using compressed sensing, the missing antenna elements can
be reconstructed in order to mitigate the high side lobes [33].
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X. EXEMPLARY DOA ESTIMATION: DML APPROACH

This example requires the measured calibration matrix C. A
MATLAB syntax is chosen to illustrate the required processing
steps.

% input variables

% a: the measurement steering
vector

the calibration matrix with each column representing a
measurement steering vector

vector is a complex column

% C:

% calculate the cross—correlation of (2)

% —> the Hermitian operator is realized with a complex
conjugation conj and the transposition

% —> the normalization is done with the Euclidean norm by
summing the squared values and taking the root of it

% —> C(:) converts the matrix to a vector, hence, a sum of
the vector is required and not a double sum

A = conj(C).” = a / ( sqrt(sum(abs(a).”2)) = sqrt(sum(abs(C
(:)).72)) )

% —> convert the spectrum to a logarithmic scale

A = 10«logl0( abs(A)."2 );

% the x axis is dependent on the measured
this example equal calibration steps

from [—90,90] degree have been captured

plot(linspace(—90,90,numel(A)), A)

angular steps, in

R

XI. EXEMPLARY DOA ESTIMATION: FFT APPROACH

This example expects a uniform linear array, because then
the DFT equation (4) can be simplified to a Fast Fourier
Transform. Additionally, the calibration — as mentioned in
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(13) — has to be applied to ensure that a target at 0° leads to
equal phases at all channels. A MATLAB syntax is chosen to
illustrate the required processing steps.

% input variables
% a: the calibrated measurement steering vector is a
complex column vector

% calculate the Fast Fourier Transform

% —> the input vector has 32 entries , for a smoother
spectrum use a zero—padding to 256 values

% —> normalize the spectrum with the number of input
samples

% —> this is (4) written with the fft function

A = fft(a, 256) ./ numel(a);

% —> convert the spectrum to a logarithmic scale
A = 10+logl0( abs(A)."2 );

% as stated in (5), the spectrum is linear in sin(theta),
hence create the frequency vector with arcussin
% —> scale it linearly and then apply the arcussin

f = asin( linspace( —0.5 % lambda_0 / delta_x, 0.5 =
lambda_0 / delta_x, 256 ) );

% some programs output the spectrum from [0,fs] and not
from [—fs/2,fs/2], with fs being the sampling frequency

% —> the fftshift shifts the spectrum to be in [—theta_min ,
theta_max |

% —> convert the angle from radians to degree scaling

plot(rad2deg(f), fftshift(A))

XII. EXEMPLARY DOA ESTIMATION: DFT APPROACH

In contrast to the FFT approach, the DFT version can be
applied to a non uniform linear array as well, although this
example expects the ULA. Additionally, the calibration —
as mentioned in (13) — has to be applied to ensure that a
target at 0° leads to equal phases at all channels. A MATLAB
syntax is chosen to illustrate the required processing steps.
The following example is a practical implementation of (4).

% input variables
% a: the calibrated measurement steering vector is a
complex column vector

% the input measurement steering vector is zero—padded to
this length
L = 256;

% preallocate the resulting frequency vector
v_n = zeros(L, 1);

% zero—padd the measurement steering vector to the same
length
a_zp = [a; zeros(L—numel(a),l)];

% calculate the DFT (4) by hand

% —> the measurement steering vector ranges from [0,L—1],
which is without zero—padding [0,Mr—1]

theta = 0:L—1;

% —> this for loop calculates the whole frequency vector in
contrast to (4) which only calculates a single
frequency spectrum value

for k = l:numel(theta)

% —> the kthe frequency spectrum value in (4) consists
of a sum, which is here realized with a vector
product of a row and a column vector to be more
efficient

% —> the current frequency is theta(k) which is in (4)
the n

9% —> the division by Mr in (4) is written as numel(a_zp
)

% —> in the sum, k is increased vom [0 ,Mr—1], which is
here [0,L—1] due to the zero—padding. the column
vector for the vector product is created with the
colon : operator and a transposition .

v_n(k) = a_zp. =% exp(—1li*2+pi = theta(k) / numel(a_zp)
# (0:numel(a_zp)—1)).";

end

% —> convert the spectrum to a logarithmic scale

v_n

% as

= 10«logl0( abs(v_n)."2 );

stated in (5), the spectrum is linear in sin(theta),
hence create the frequency vector with arcussin

% —> scale it linearly and then apply the arcussin

f =

asin( linspace( —0.5 % lambda_0 / delta_x, 0.5 =
lambda_0 / delta_x, L ) );

plot(rad2deg(f), v_n)
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