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Abstract — For imaging radars, the calibration effort increases
with higher frequency and finer angular resolution demands and
is therefore one of the largest cost factors in radar production. In
case of high angular resolution, the calibration is also sensitive
to array misalignment, resulting in costly calibration procedures.
This paper proposes an angle-dependent radar calibration
method with significantly reduced calibration effort. The high
efficiency and robustness against misalignment is achieved by
exploiting phase symmetry of a target in the measured radar
response. Based on an initial theoretical formulation followed by
an experimental verification, this novel approach does not only
yield a cost-effective calibration, but also increases the robustness
against array misalignment.
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I. INTRODUCTION

Future radar applications require radar sensors with an
improved detection performance in range, velocity, and
angle [1]. Typically, a time-consuming angle-dependent
calibration with an angular step size below the resolution of
the array is required to determine the calibration parameters
required for direction-of-arrival (DoA) estimation [2], [3], [4].
Consequently, the calibration is one of the largest cost factors
in radar production [5].

For most radar applications, the estimation of the DoA
is based on digital beamforming on the receiver side. The
required steering vector for DoA estimation is extracted
from the corresponding range-velocity bin of the detected
target in each channel [6], [7], [8]. Especially at frequencies
in the upper millimeter wave range (above 100 GHz), the
performance in DoA estimation is sensitive to antenna
misalignment due to the small wavelength and mutual antenna
coupling, which are the main contributions for a deviation
between ideal array model and the electrical behavior of
the antennas. This increasing deviation between the desired
antenna positions and the electrical behavior of the antennas
requires to calibrate the antenna locations (phase centers) in
order to obtain an accurate DoA estimation [5], [9].

In this paper, an angle-dependent radar calibration with
high accuracy of the determined calibration parameters is
proposed. It will be shown that the number of measuring points
can be reduced significantly compared to common calibration
methods. The phase center and the individual phase offset
for each receive (RX) antenna are determined by exploiting
symmetry in the phase pattern. The reliability and accuracy of
the method is proven by measurements.
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Fig. 1. Calibration set-up and reference coordinate system for a an antenna
array and an exemplary highlighted receive antenna ( ) located outside the
measurement origin. The calibration target is moving on a trajectory around
the measurement origin in the far-field (r�xk) of the array ( ). The steering
vector at the angle ϑi is modified as if the virtual target ( ) is measured.

II. DOA ESTIMATION WITH DFT
Depending on the incident angle of the wave at the k-th RX

antenna of an antenna array, an additional phase shift w. r. t.
the adjacent antenna occurs. In general, the angular spectrum
P(ϑ) is obtained by a discrete Fourier transform (DFT), where
the n-th entry Pn is given by [5]

Pn =

NRX∑

k=1

ske−jφke−j2π k′
NZP

n
, (1)
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xk
λ0/2
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180◦
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,
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[
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δϑ
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90◦

δϑ

]
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In (1), s = (s1, . . . , sNRX) denotes the steering vector, φk is
the individual phase offset at the k-th RX antenna at boresight
due to hardware imperfections, k′ is the fractional value of the
antenna location xk, λ0 is the free-space wavelength, NZP is
the overall number of Fourier samples according to the desired
angular grid resolution δϑ, and ± sin(ϑmax) is the angular field
of view. At millimeter wave frequencies, a deviation between
the physical antenna position and the electrical behavior
of the antenna occurs due to mutual antenna coupling or
manufacturing uncertainties [5]. Apart from the individual
phase offset φk determined in common radar calibration, the
true electrical antenna position xk is therefore unknown and
must be determined by calibration.

III. CALIBRATION CONCEPTS

The calibration set-up and reference coordinate system are
given in Fig. 1 for an exemplary RX antenna ( ) on the x-axis
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Fig. 2. Measured phase pattern at an exemplary RX antenna. (a) Calibration based on the phase progression for different angular step sizes. (b) Calibration
based on the phase symmetry with an angular step size ∆ϑ= 2.5◦.

and a calibration target ( ) in the far-field at distance r from
the antenna. The phase center of an antenna is defined as the
origin of a spherical wave emitted by the antenna. Without loss
of generality, the phase center of the k-th antenna is located
at the unknown distance xk from the measurement origin.

A. Calibration Based on Phase Progression

According to the calibration set-up in Fig. 1, the
angle-dependent phase progression ∆φk of a plane wave
impinging on the k-th RX antenna is given by

∆φk(ϑ) =
2π

λ0
xk sin(ϑ) + φk . (3)

This phase trend is evaluated in Fig. 2 (a) for two different
angular step sizes ∆ϑ. In case of large arrays, the change
in phase for two successive angular steps at distant antennas
from the array center might exceed 180◦, leading to phase
ambiguities. However, a sufficiently small angular step size
eliminates ambiguities and allows to determine the phase
center xk and the phase offset φk required for the DoA
estimation in Section II by means of linear regression, see
Fig. 2 (a). For a reliable parameter extraction based on data
without phase ambiguities, the angular step size ∆ϑ must fulfill

∆φmax = 360◦
x

λ0
sin(∆ϑ)

∣∣∣∣
x=

{
|max{xk}|
|min{xk}|

� 180◦ . (4)

Consequently, the angular step size must be reduced for
increasingly large aperture sizes AV = |max{xk}−min{xk}|.
B. Calibration Based on Phase Symmetry

In contrast to the calibration method based on phase
progression, phase ambiguities (see Fig. 2 (a), ) can be
significantly reduced if symmetry in the phase pattern
is exploited. As shown for antenna measurements [10],
asymmetries in the phase pattern of the measured RX signal
can be used to determine the phase center of an antenna. Since
the bandwidth of radars is relatively small compared to the
center frequency, the signal can be considered as narrowband.
This allows to adopt this method for radar calibration.

The calibration method based on phase symmetry can be
subdivided into the following two steps:

1) Determine the Phase Center of the Antenna

In the following, a calibration target moves on a trajectory
with radius r around the origin of the measurement coordinate
system (see Fig. 1). The measured distance of the target at
the k-th RX antenna and the corresponding phase of the target
in the radar response differs for each measurement angle ϑi
as the antenna is located outside the measurement origin.
To determine the unknown phase center xk of the k-th RX
antenna, the position of the antenna is virtually shifted along
the x-axis to achieve maximum phase symmetry. By means
of a global search with all possible antenna position shifts
(grid resolution: λ0/20), the optimum shift is evaluated in each
measurement plane. Therefore, the symmetry metric

S =

bM/2c∑

i=1

|φM+1−i − φi| (5)

shall be minimized. In (5), φi denotes the phase of the
target in the radar response at the angle ϑi ∈ [−ϑmax, ϑmax]
and i∈ [1, . . . ,M ] the measurement number. A low value S
corresponds to a high phase symmetry [cf. Fig. 2 (b)].

The measured entries of the steering vector ski for each
measurement i at the angle ϑi are modified with the same
virtual antenna shift along the x-axis (see Fig. 2 (b), ).
A path difference xk between the k-th RX antenna and
the measurement origin corresponds to a change in phase
of ∆φ̃k(ϑi) = 2πxk sin(ϑi)/λ0 [cf. (3)]. Thus, the measured
entry of the steering vector is modified by

s′ki = ski exp
(
−j∆φ̃k(ϑi)

)
= |ski | ejφki , (6)

which coincides with a measurement of the virtual target ( )
or, alternatively, with a shift of the phase center of the antenna
to the origin of the measurement coordinate system. Without
loss of generality, this procedure can be extended to a 2-D
lattice of antennas. However, to remain ambiguous-free, the
measurement has to be performed in two orthogonal planes.
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Fig. 3. Photograph of the antenna array consisting of eight MMICs, each
incorporating one transmit (TX, ×) and one RX (×) antenna.

Table 1. Overview of the radar parameters

Ramp duration T 100µs
Center frequency fc 152.5 GHz
RF bandwidth B 10 GHz
Number of chirps Nc 512
Number of virtual channels NVX 64 = 8× 8
Virtual aperture size AV 65λ0

2) Polynomial Fit of the Modified Phase Pattern

Due to a small displacement in y-direction, r changes
symmetrically for positive and negative angles. Thus, the
modified phase pattern results in a parabola and not in a
straight line. Based on a polynomial fit of 2nd order, the phase
offset φk is extracted from regression at the angle ϑi = 0◦.

In case of a spherical incident wave (far-field condition not
valid), the k-th RX antenna experiences a phase progression
for a target located at ϑi = 0◦. Thus, the phase offset φk has
to be corrected by means of an optical path model.

IV. MEASUREMENT VERIFICATION

The performance of the symmetry-based calibration is
proven by measurements regarding the accuracy of the
determined calibration parameters, the performance in angular
estimation, and robustness against misalignment. Afterwards,
it is compared to the calibration based on phase progression.

A. Radar Demonstrator

A photograph of the 160 GHz frequency-modulated
continuous-wave (FMCW) radar front end consisting of
8 monolithic microwave integrated circuits (MMICs), each
incorporating one TX and one RX antenna, is shown in Fig. 3.
The radar is operated with the radar parameters summarized
in Table 1. For further information on the radar demonstrator
and the antenna array, see [9].

B. Accuracy of the determined Calibration Parameters

To demonstrate the efficiency of both calibration methods
in comparison, the radar is calibrated with an angular step
size ∆ϑ= 0.1◦ according to Fig. 1. Afterwards, the phase
centers xk and phase offsets φk are evaluated in terms of
the angular step size ∆ϑ by omitting measuring points. As
shown in Fig. 4, both calibration methods provide identical
phase centers xk and phase offsets φk for small angular
step sizes [< 0.8◦, theoretical limit: 0.88◦, cf. (4)]. For larger
angular step sizes ∆ϑ, the phase progression approach results
in phase ambiguities leading to a regression line with reduced
slope [cf. Fig. 2 (a)]. Thus, the estimated antenna positions and
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Fig. 4. Accuracy of determined calibration parameters. (a) Phase centers
of virtual antennas obtained from the calibration using phase symmetry (�)
and using phase progression (×). Phase error of the phase offset εφk

for
(b) the phase progression method and (c) for the phase symmetry method.
1© εφk

< 20◦, 2© 20◦<εφk
≤ 80◦, 3© εφk

> 80◦.

the resulting virtual array become smaller [see Fig. 4 (a)]. In
contrast, using the symmetry approach, the angular step size
can be increased up to 3◦ without any significant deviation
from the phase centers obtained by a step size of 0.1◦. The
phase error of the phase offset εφk

is defined as the deviation
from the standard calibration with a step size of 0.1◦. As
shown in Fig. 4 (b) and (c), when using phase symmetry, the
phase error of the phase offset is much less error-prone. The
phase offset can be determined very accurately up to a step
size of ∆ϑ= 3.5◦ whereas an angular step size below 0.8◦ is
necessary for the method based on phase progression.

C. Performance in Angular Estimation

The performance in DoA estimation is now evaluated using
both calibration techniques for a target, which is located at the
distance R= 3.6 m and the angle ϑ=−20◦. The measurement
results are depicted in Fig. 5. The same measurement data
is employed with a different angular step size ∆ϑ used for
the calibration. Starting from an angular step size of 0.8◦,
the phase progression method results in increasing deviations
w. r. t. the calibration with a step size of 0.1◦ [Fig. 5 (a)].
Additionally, the target peak is broadened due to the decreasing
aperture size as shown in Fig. 4 (a). For the symmetry-based
calibration method, there is no noticeable change in the angular
spectrum up to an angular step size of 2.5◦ in the calibration.
This is also illustrated by the absolute mean error and the
corresponding standard deviation given in Tab. 2 for a different
number of measuring points in comparison to the reference
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Fig. 5. DoA estimation results for a target located at the incident
angle ϑ=−20◦ in dependency of different calibration step sizes ∆ϑ.
(a) Calibration based on phase progression. (b) Calibration based on phase
symmetry.

Table 2. Mean error (ME) and standard deviation (SD) of the angular spectrum
in Fig. 5 for both calibration approaches in comparison.

∆ϑ Cal. phase progression (ME/SD) Cal. symmetry (ME/SD)

0.8◦ −19 dB/−16.9 dB −32.9 dB/−31.2 dB
1.0◦ −15.8 dB/−13.2 dB −31.5 dB/−29.8 dB
2.5◦ −12.61 dB/−9.1 dB −29.6 dB/−24.92 dB

calibration with a step size of 0.1◦. The small mean error
and standard deviation prove that only negligible deviations
occur up to an angular step size of 2.5◦ in case of the
symmetry-based calibration. In contrast, the method based on
phase progression is influenced by clearly larger deviations
already starting from an angular step size of 0.8◦.

D. Robustness against Misalignment

A misalignment of the whole array in x-direction leads
to an increased antenna distance from the array center.
According to (3), the phase progression is increased and
phase ambiguities occur for smaller angular step sizes.
Fig. 6 shows the resulting phase centers of the antennas
for a misalignment of ∆x= 15λ0 (=̂ 3 cm) in dependency
of varying angular step sizes. For the calibration based on
phase progression, deviations from the correct phase centers
of the antennas occur for an angular step size above 0.3◦

instead of above 0.7◦ [cf. Fig. 4 (a)]. In contrast, using phase
symmetry, there is no noticeable change in the phase centers
of the antennas up to an angular step size of 2.5◦. Thus, the
calibration data is also insensitive to array misalignment.
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Fig. 6. Robustness against misalignment using the calibration method based
on the phase-symmetry (�) and based on the phase progression (×) for a
misalignment in x-direction of ∆x= 15λ0 (=̂ 3 cm).

V. CONCLUSION

A novel angle-dependent calibration technique exploiting
the phase symmetry of the measured radar response has been
proposed and compared to a common calibration method
using the angle-dependent phase progression of antennas.
Based on measurement results, it is shown that a significant
reduction of calibration samples up to a factor of 4 is achieved
while preserving the estimation performance. Moreover, an
enhanced robustness against array misalignment is achieved,
thus allowing a reliable and cost-effective calibration of future
radar systems with high angular resolution.

ACKNOWLEDGMENT

This work is funded by the German Research Foundation
under project number 317632307.

REFERENCES

[1] C. Waldschmidt and H. Meinel, “Future Trends and Directions in Radar
Concerning the Application for Autonomous Driving,” in European
Radar Conference, Oct. 2014, pp. 416–419.

[2] D. Zankl et al., “BLASTDAR—A Large Radar Sensor Array System for
Blast Furnace Burden Surface Imaging,” IEEE Sensors Journal, vol. 15,
no. 10, pp. 5893–5909, Oct. 2015.

[3] P. Heidenreich, “Antenna Array Processing: Autocalibration and Fast
High-Resolution Methods for Automotive Radar,” Ph.D. dissertation,
Technical University of Darmstadt, 2012.

[4] G. Körner et al., “Calibration of MIMO Fully Polarimetric Imaging
Radar Systems with Passive Targets,” Frequenz, 2019.
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