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Abstract—For unmanned aerial vehicles (UAVs), grid maps
can be a versatile tool for navigation and self-localization. In
general, payload is critical for UAVs and every additional sensor
limits the flight duration. Due to its robustness and the ability
to directly measure velocities, radar sensors are well suited for
sense and avoid applications (SAAs) for UAVs. It would be
advantageous if these sensor data could be used to generate
grid maps instead of mounting additional sensors such as light
detection and ranging (LiDAR). This letter demonstrates that
using the data from high-resolution multiple-input-multiple-
output (MIMO) imaging radars, high-resolution 2-D and 3-D
radar grid maps can be created. The necessary adaption of the
sensors free-space model for MIMO radar-based occupancy grid
maps is presented in detail. UAV-borne measurements resulting
in 2-D and 3-D grid maps with an adequate representation of
the environment validate this approach.

Index Terms—Frequency-modulated continuous-wave radar,
multiple-input multiple-output (MIMO) radar, occupancy grid
map (OGM), unmanned aerial vehicle (UAV).

I. INTRODUCTION

N THE area of robotics, the problem of mapping the

environment, e.g., for navigation and path planning, is stud-
ied since several decades. End of the 1980s, the well-known
occupancy grid that uses a probabilistic approach to represent
the occupancy state of a single grid-cell based on noisy
and uncertain sensor data was published [1]. Occupancy grid
maps (OGMs), generated either with a known pose of the
sensor or using a self-localization and mapping (SLAM)
algorithm [2], are nowadays heavily used. Compared with
topographic or feature-based approaches, occupied and free
areas can be determined directly in OGMs. Different sensor
principles ranging from stereo vision [3] over light detection
and ranging (LiDAR) [4] to radar sensors [5] have already
been used for OGMs. Despite being quite expensive, 2-D
LiDARs specifically are very popular on unmanned aerial
vehicles (UAVs) [4], [6] because of their high range and angu-
lar resolution. Due to the pencil beam, a single 2-D LiDAR is
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not enough for sense and avoid application (SAA) Beul et al.
[4] and Ki et al. [6] used two 2-D LiDARs twisted by 45°
mounted on a rotating plate to form a 3-D LiDAR also used
for mapping.

Compared with vision-based, infrared, ultrasonic, or LIDAR
sensors, radar sensors are very robust to environmental
conditions such as rain and dust and offer high detec-
tion ranges. Their usage to generate grid maps is success-
fully demonstrated in the automotive field, e.g., for self-
localization or autonomous path planning [7], [8]. In order
to use the classical OGM approach for radar configurations,
the sensor model has to be adjusted to the specific charac-
teristics of the radar sensor. For UAV collision avoidance,
the creation of an environmental model with 20-m resolution
has been shown in [9] using a scanning radar. For this type of
radar, e.g., with beamwidths of 1.8° and <2° as in [5] and [10],
respectively, the radar sensor model does not significantly dif-
fer from the sensor model of a LiDAR. The only extension of
the model under consideration is that radar sensors are able to
penetrate through vegetation and to detect objects behind other
objects. However, considering the state-of-the-art multiple-
input-multiple-output (MIMO) imaging radar sensors, the sen-
sor model needs further adjustments because the field of view
(FoV) of the sensors is very wide. In [7], the sensor model
is improved that the assumed free space between the radar
sensor and the target uncertainty ellipsoid does not overwrite
overlapping uncertainty ellipsoids of additional targets. Since
higher velocities lead to higher uncertainties, [8] introduced
a linear velocity dependence of the plausibility values of the
uncertainty ellipsoid and a degrading factor for the free space.
In addition, the complete FoV of the radar sensor without any
measured targets is declared as free space.

It has already been shown that using radar sensors on UAV's
offers excellent performance for SAA [11]. This work focuses
on the feasibility to use the radar data from the SAA sensor to
create 2-D and 3-D radar grid maps. Due to the payload restric-
tions of UAVs, it is advantageous that no additional sensors
are needed for high-resolution mapping. Moreover, based on
the procedure in [7], the free-space model for MIMO imaging
radars is improved in this letter. Instead of assuming free space
for the complete FoV, a distance and angle-dependent free-
space probability is introduced to account for the growing
uncertainty in radar measurements with increasing distance
and angle, reaching 0.5 for the maximum range and maximum
FoV of the used radar sensor. Section II presents the entire
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Fig. 1. Symbolic representation of the single steps from the radar measurement to the OGM. 1-1-blocks describe the chirp-sequence radar processing steps
for a single measurement frame with the 2-D-FT range—velocity processing (r-v-Matrix), OS-CFAR target detection (X), and DoA estimation for the extracted
targets (x-y-Matrix), resulting in the radar target list. The target probability is calculated for the targets in the measurement frame, and all affected cells of
the sensor free-space model are updated with the corresponding probability (sensor model). Considering the global position and orientation of the UAV (UAV
Telemetry), the sensor model is transformed to a local geographic frame (NED coordinate system). Finally, all affected cells of the occupancy gird map are

updated using a binary Bayes filter.

signal processing chain from the radar data to the final grid
map. Measurements in Section III show that high-resolution
radar grid maps can be produced using the SAA sensor data
and Section IV concludes this work.

II. GRID-BASED REPRESENTATION OF RADAR DATA

The target lists used in this work are all generated based on
the same fundamental radar signal processing steps. Without
loss of generality, a 2-D imaging radar with Ngrx receive
channels and chirp-sequence frequency modulation is used
[12]. The following steps are applied to each measurement
frame. For each receive channel Ny, consecutive frequency
ramps, each consisting of Ng time samples, are recorded.

1) Windowing: A Hann window is applied to the Ng x Ng
time matrix in both dimensions to suppress sidelobes
introduced by the successive steps.

2) Range—Velocity Estimation: The 2-D Fourier transforma-
tion (FT) of the Nr x Ns matrix to resolve the range—
velocity (r-v)-matrix. The range r is determined by an
FT of a single ramp and the velocity v by an FT of all
ramps of each range cell.

3) Accumulation: All Nrx r-v-matrices of the receivers are
accumulated into a single r-v-matrix by a noncoherent
integration.

4) Target Extraction: An ordered statistic constant false
alarm rate (OS-CFAR) algorithm [13] is separately
applied in the r and v dimension. A target is only valid
if it is detected in both dimensions.

5) Direction of Arrival (DoA) Estimation: For each
extracted target, the azimuth angle ¢ is determined using
an FT along all receiving channels.

6) Target List: A target list containing r, v, ¢, the receive
power, and the SNR of the targets is created.

Steps 3-6 are exemplified by the wi-blocks in Fig. 1. The
x-y-matrix is only used to visualize the DoA estimation.
In addition to the radar target list, the global UAV position
and orientation (quaternions) for each measurement frame is

needed to map the detected targets to a local geographic frame
represented by a north-east-down (NED) coordinate system. In
the following, the basics of the two grid-based representations
used in this letter are introduced.

A. Amplitude Grid Map

An easy and computationally fast approach for a grid-based
representation of radar data is the amplitude grid map (AGM)
proposed in [7]. Assuming point-like targets, the free-space
losses are compensated by raising the target receive power
by 40 dB per range decade. At the cost of reduced positional
accuracy, the AGM reduces the radar measurement uncertainty
by calculating the mean of the complete measurement time of
the weighted target amplitude (o< (1/r)) affecting the grid cell
under consideration.

B. Occupancy Grid Map

In this form of representation, the map is build up as a grid,
with each cell storing a value representing its occupancy prob-
ability (between O: free space and 1: fully occupied). An in-
depth derivation can be found in [2]. In general, a sensor model
is used to update the probability of all cells within the sensors
FoV. This model depends strongly on the type of sensor (e.g.,
LiDAR, sonar, or radar), and therefore, the implementation for
MIMO imaging radars is described in detail in this work. It is
considered that for example in contrast to LiDAR, a radar can
sense targets, which are optically hidden behind other targets.
The sensor model is formed by a free-space model describing
the FoV of the radar sensor. This model is then updated with
the targets found by the radar sensor.

The probability of the free-space model (prsym) depends on
the maximum range ry,x and the FoV of the radar sensor. Since
the same target is not measured at the exact same position
in each radar measurement, the minimum of ppgy iS set to
0.3 in order to prevent a too strong neutralization of previous
measurements. In range, the plausibility degrades oc (1/r?%)
from 1.0 until it reaches 0.5 for rp.c. In azimuth, the FoV
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is characterized by the directivity of a single channel (in this
work, the directivity of a single microstrip patch antenna) and
is approximated by a cosine function, which reaches 0.5 at the
maximum FoV. The sum of both results in

In(1.2-0.5
prsu(r, p) = 2.3 - exp(zi)rz)

o B acos(0.5) 1
COS<7F0V go>. (1)

The addend 2.3 sets the minimum of the plausibility to 0.3.
In addition, the plausibility needs to be limited to 0.5

pesm (7, @) = max(prsm(r, ), 0.5). 2)

The resulting free-space model can be seen in Fig. 1.

For each measurement frame, the free-space model is
updated with the targets provided by the target list. Target
plausibility p, consists of individual plausibility measures for
range p,, azimuth p,, and SNR psxr according to

pr = exp(ln(?)rz) 3)
rmax

acos(0.5) @
= COS| ————
Py FoV @
-1
psxe = 1 —exp(aSNR|, +b) (3)

where the scaling factor a and offset b for pgngr are determined
by solving (5) for the minimum and maximum reasonable SNR
of the radar sensor for the probabilities 0.5 and 1, respectively.
Each single plausibility is limited to a minimum of 0.5, and
p; is calculated by taking the mean of the probabilities

_ Pt P¢3+ PSNR- ©)

In order to obtain the sensor model, in addition to the
target probability, the measurement uncertainties in range and
azimuth are considered. The standard deviation in range o, for
frequency-modulated continuous-wave (FMCW) radars with
bandwidth B and in azimuth ¢, with the 3-dB beamwidth
Apsgp is stated in [14] and [15], respectively

Pr

G > 3 C(Z) o — A¢73dB
"=\ 27)>SNR Ns B2 ? 1.6J2SNR’

For an SNR of 10 dB and with the values stated in Table I,
it can be deduced that o, is neglectable because it results in
submillimeter accuracy and is much smaller than the range
resolution (centimeter range). With the target probability p,
and o,, the free-space model is updated assuming a Gaussian
distribution. All cells in radial distance r and in the affected
angular range ¢ &30, are overwritten if the probability value
is greater than the probability of the free-space model at these
cells. This procedure ensures that already inserted targets are
not overwritten by weaker targets.

After transforming the sensor model into the local NED
coordinate system, the occupancy map is updated using a
binary Bayes filter [2].

The previously described procedure can easily be extended
for 3-D grid maps by considering the elevation angle .
Depending on the used antenna, a third subtractive term can be

@)

TABLE I

USED RADAR PARAMETERS FOR GRID MAP REPRESENTATIONS
Parameter 2D | 25D | 3D
Bandwidth B 2GHz
Ramp time TR / repetition time TRR 50us / 60 us
Sampling frequency fs 20 MHz
Measurement rate 15Hz
Number of receivers Ngrx 8
Number of transmitters Npx 3 4
Number of ramps Ng 258 256
FoV azimuth +80° +60°
FoV elevation - ] £35° +30°

added to (1). The same applies for the update process in the
sensor model. Beside the additional term for the probability in
elevation py for the overall target probability, a 2-D Gaussian
distribution with standard deviation oy for the elevation angle
is used to calculate the probability of the affected cells (r,
¢ £ 30,, and ¥ & 30y).

III. MEASUREMENT RESULTS

The measurement system is based on a 77-GHz time-
division multiplexing (TDM) high-resolution MIMO imaging
radar with exchangeable antenna front end. By replacing the
antenna array, the same system can be used for 2-D and
3-D imaging. The radar and the measurement PC are mounted
on a hexacopter that can lift up to 6 kg with a flight time
of approximately 15 min. All measurement data (radar data,
camera image, and UAV telemetry) are stored by the mea-
surement PC, synchronized by a global navigation satellite
system (GNSS) timestamp, and processed offline. An in-depth
description of the complete measurement system is given in
[11]. The most important radar parameters are listed in Table I.
They result in a range resolution of 75 mm and a maximum
range of 37 m. The angular resolution in azimuth for the 2-
D/2.5-D case is 3° and for the 3-D case 10° in azimuth and
23° in elevation. In the following, the grid map approaches
discussed in Section II are applied to different scenarios. For
all measurements, the probability saturation of the OGM is set
to 0.1 and 0.9.

A. Soccer Pitch—A 2-D Representation

To investigate the difference between the two described
grid map approaches, a soccer pitch partly bordered by a
high fence is chosen as the first measurement scenario. A
3 x 8 MIMO antenna system is applied, yielding a 24-element
uniform linear array (ULA) facing forward in flight direction.
The UAV is manually maneuvered around the soccer pitch
with an approximate altitude above the ground level of 2
m. During the 3-min flight, 2650 radar measurements were
recorded.

The results of the AGM and OGM with a resolution of 0.1 m
are shown in Fig. 2(a) and (b), respectively. In each of the
two maps, the fence of the soccer pitch, the soccer goals,
and the open areas can clearly be identified. Even reflections
caused by undergrowth behind the fence are included in both
maps. Using the OGM results in a much sharper representation
overall. Looking at the magnified area Fig. 2(c), the free space
between the goal posts and the fence can be identified much
clearer compared to the AGM.
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Fig. 2. Measurement results of a soccer pitch. (a) Amplitude and (b) OGM with a grid resolution of 0.1 m. In (c)—(e), images taken by the UAV camera of
interesting points highlighted in the two different grid map approaches are displayed. Twelve distinctive points, such as lamp and goal posts, as well as the
start point and endpoint of the fences, are marked with (%) using a tachymeter and with (X) extracted from the OGM.

A problematic region in the OGM is identified in Fig. 2(d).
While the right-angled fence corner can clearly be recognized
in the AGM, a very low occupancy value is present in
the OGM. Since the UAV flies straight ahead toward the
fence, the fence occurs as an extended target with multiple
reflections in the same range—velocity cell. No multitarget
estimation is performed in the angular domain; therefore,
only the most dominant reflection is considered, which occurs
under a different angle each radar frame. As a consequence,
the occupancy likelihood is decreased frame by frame, leading
to this unfavorable partial result. However, Fig. 2(e) highlights
the much better resolution of the OGM. The goal next to
the fence is only clearly distinguishable in the OGM. For a
better impression of the soccer pitch, Fig. 3 shows the OGM
superimposed with a satellite image.

For ground-truth data, 12 distinct points of the soccer
pitch have been measured using a tachymeter and are marked
with (%) in Fig. 2(b). The same points have been extracted
from the OGM and are marked with (x). The mean displace-
ment of the (%)-points to the (x)-points amounts to 1.14 m,
which is due to the drift of the GPS. More meaningful is the
distances between the points relative to the encircled point in
the corresponding domain. Calculating the standard deviation
of the discrepancy between the distances of (x) and (x) results
in 0.48 m. In addition, the position of the UAV has also been
tracked using the tachymeter. Applying the same analysis to
the resulting OGM with the tachymeter-based positions leads
to a mean displacement of 0.30 m, and the standard deviation
of the discrepancy between the distances amounts to 0.13 m.

B. Stone Wall — A 2.5-D Representation

In order to generate a 3-D terrain model without the usage
of a 3-D imaging radar, a 2-D imaging radar in combination
with the movement of the UAV can be used. For this purpose,
the already mentioned 24-element ULA is facing downward
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Fig. 3. Satellite image of the soccer pitch superimposed with the OGM.

Satellite image: Google, GeoBasis-DE/BKG.

and the UAV is flying along a stepped stone wall shown
in Fig. 4(a). Because no DoA estimation is performed in
the elevation axis, we call this approach 2.5-D; nevertheless,
it results in a 3-D OGM. The free-space model is adjusted
to the 3-D scenario following the procedure described in
Section II-B, and the resulting beam for probabilities smaller
0.5 is shown in Fig. 4(b). Displaying all occupied cells with
a probability greater 0.65, the OGM with a grid resolution
of 0.2 m of the stepped stone wall shown in Fig. 4(c) is
obtained. Besides some clutter caused by bushes, the distinct
levels can clearly be identified and the extracted height ranges
between 1.0 and 1.4 m. This is in good consistency with the
overall height of the five steps, each with a height between
0.20 and 0.25 m.

C. University Campus—A 3-D Representation

To evaluate the procedure in a more complex area, the UAV
flies through a passage with a footbridge. A 3-D imaging
radar was used with a 32-element 2-D-quasi-ULA to generate
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Fig. 4. (a) Stepped stone wall with a step height of 0.20-0.25 m is mapped
using a 2-D imaging radar. (b) Beam of the free-space model for probabilities
smaller 0.5. (c) Result for a probability greater than 0.65 of the 2.5-D OGM
with a grid resolution of 0.2 m.
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Fig. 5. Antenna positions of the used 32-element 2-D quasi-ULA are depicted
in (a), with ® receiver, W transmitter, and 4 virtual element positions. (b) Image
of a passage with a footbridge between two buildings. For a probability greater
than 0.65 the 3-D OGM of the footbridge is given in (c).

a 3-D OGM. The antenna positions of the used array are
shown in Fig. 5(a). Fig. 5(b) shows a picture of the passage
on the campus with the footbridge and trees. A section of

the resulting 3-D OGM representing the footbridge is shown
in Fig. 5(c). The free space below the footbridge can clearly
be identified in the OGM and matches the real dimensions
with a height of about 5 m and a width of around 8 m.

IV. CONCLUSION

In this letter, the potential of creating 2-D and 3-D OGMs
for a UAV-borne high-resolution MIMO imaging radar has
been successfully demonstrated. The derived 2-D OGM using
telemetry-based positions features high resolution, and the
relative distances between extracted reference points show
only a standard deviation of 0.48 m compared to the real dis-
tances. Using tachymeter-based positions reduces the standard
deviation to 0.13 m, which is in the same order as the grid
size. Thus, the accuracy of the OGM is mainly limited by
the positioning errors. Utilizing the degrees of freedom of the
UAV, terrain profiles represented by 3-D OGM:s can be created
despite using a 2-D imaging radar. Finally, a 3-D OGM of a
passage has been recorded with a 3-D imaging radar. In this
map, a footbridge connecting two buildings can clearly be
identified as traversable.
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