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Abstract— In this article, a method for the assessment of the
performance and for the design of a 2-D-array for multiple input
multiple output (2-D-MIMO) radar applications is presented. The
proposed approach is based on the analysis of the ambiguity
function associated with the array. Such analysis leads to the
definition of an area in the 2-D-angular field-of-view of the
radar, denoted as ambiguity-free region, characterized by a
low probability to obtain ambiguities in direction of arrival
estimation. Simulations of a basic 2-D-MIMO array are used
to explain the proposed method, which is then employed as
the main criterion for the optimization of a 2-D-MIMO sparse
array composed of four transmitters and eight receivers. The
optimization is performed through a genetic algorithm. The
resulted element positions guarantee an ambiguity-free region
span in the azimuth and elevation angles greater than 120◦
and angular resolutions of 8◦ and 5.9◦ on the azimuth and
elevation angles, respectively. The optimized positions are then
used to realize a 2-D-MIMO sparse array that is integrated in a
radar system operating at a center frequency of 76.5 GHz. Such
an array is calibrated, and comparisons between the simulated
and measured ambiguity functions show the effectiveness of the
proposed method.

Index Terms— 2-D-array, ambiguity function, multiple input
multiple output (MIMO), MIMO radar, radar.

I. INTRODUCTION

A3-D-IMAGING radar is able to detect the direction of
the target in the azimuth and elevation angles as well as

its radial distance. Such a capability may enable a wide range
of possible applications. In fact, a 3-D-imaging radar has the
potential to recognize the target shape in a 3-D-space [1].
This represents a key feature for applications as security
body scan [2] and hidden object detection [3]. Moreover,
the possibility to get angular information in both planes
leads to a significant improvement of the system performance
in applications as autonomous driving and drone collision
avoidance [4].
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Several techniques to detect direction-of-arrival (DoA)
in 3-D-space are investigated and presented in the literature,
among them the most common are 2-D-beamforming [4],
[5], synthetic aperture radar (SAR) [6], [7], and 2-D-multiple
input multiple output (2-D-MIMO) radar [8]–[10]. Different
approaches are also investigated in previous works. In [11],
a system based on the combination of MIMO radar for DoA
estimation on the azimuth angle and mechanical beam steering
in the elevation angle is proposed. In [12], the 3-D-imaging is
performed using a system composed of two orthogonal leaky
wave antennas capable to perform steering of the main lobe
through frequency scanning. In [13], a 3-D-imaging system
based on the combination of MIMO radar and SAR is shown.

The 2-D-MIMO approach has the opportunity to provide
information on the target location in a single snapshot. This
procedure overcomes drawbacks such as waiting time and
processing effort required to perform a complete scan of
the area of interest employing 2-D-beamforming radar, SAR,
mechanical scanning, frequency scanning, or combined ver-
sions of these techniques. For such a reason, this article
focuses on the 2-D-MIMO array approach, how to evaluate
its performance, and how to optimize antenna positions of the
array.

In previous works, many efforts are made on the design
of minimum redundancy MIMO arrays focusing the attention
mainly on the distribution of the virtual elements of the
MIMO radar. Among them, in [14], a combinatorial method
to design a minimum redundancy MIMO radar with a virtual
array characterized by a very large aperture for both 1-D-
and 2-D-cases is proposed. In [15], two planar sparse MIMO
arrays are designed using two criteria, namely the uniform
distribution of the array elements and the minimization of the
shadowing between virtual elements, where the latter criterion
is already introduced in [16]. The simulated radiation patterns
at boresight and when focused at an azimuth angle of 45◦
while the elevation angle is 0◦ are employed to evaluate the
performance of the arrays.

The two cases mentioned above imply limitations. In partic-
ular, in [14], the possibility to obtain errors in the DoA process
and methods to mitigate them are not taken into account.
This issue is considered in [15], where a maximum sidelobe
level of the radiation pattern is set in the specifications of the
system. On the other hand, in [15], an evaluation of the actual
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maximum sidelobe level is not performed in the optimization
process, and the aforementioned simulated radiation patterns
are used to evaluate the performance of the arrays only after
the optimization.

An optimization method for 2-D-arrays of receivers only
is presented in [17]. In particular, Lange and Yang [17]
proposed an optimization of a planar array mainly based on the
minimization of the Cramér–Rao bound (CRB). They claim
the definition of a generalized form of the radiation pattern
valid for any DoA. In such a generalized radiation pattern,
the maximum sidelobe level represents a critical constraint as
over this threshold it is more likely that the associated array
configuration will generate ambiguities in the DoA estima-
tion. The optimization process is limited to an application-
dependent angular field-of-view.

However, in [17], there are two aspects that can be
improved. The first one refers to the limitation of the analysis
of the generalized beampattern to a given angular field-of-view
of interest. In a practical scenario, the gain of an antenna does
not sharply decay out of the angular field-of-view defined by
the application. Hence, an interfering signal can be received
also out of this angular region. Depending on the 2-D-array
topology, this can cause ambiguities in the DoA estimation
also in the field-of-view of interest. Limiting the analysis to
a given angular range, this effect is neglected. The second
aspect is related to the extension of the angular range of
interest, which is free of ambiguities. In [17], this is char-
acterized by the same span in both the azimuth and elevation
angles. On the other hand, considering the possibility to obtain
a system with an arbitrarily shaped ambiguity-free region
would be beneficial for the implementation of a more general
approach.

In [18], a general method for the design of a 2-D-MIMO
array, similar to the one proposed in [17] but extended
to the multicarrier case, is presented. However, differently
from [17], Ulrich et al. [18] state that the evaluation of
the ambiguity function for a fixed DoA is sufficient to
evaluate all possible sidelobe levels and finally present the
results of the optimization of a multicarrier 1-D-MIMO array.
In [18], only the maximum sidelobe level of the ambiguity
function associated with a fixed DoA is considered. In such
a way, in case of a 2-D-array optimization, not all the
information regarding the peak sidelobe level can be recog-
nized. In fact, it can be demonstrated that depending on the
array topology, there might be DoAs that produce sidelobe
levels in the ambiguity function comparable to the main
beam.

The authors also noticed that in the works mentioned above,
where either the ambiguity function or the simulated radiation
patterns are used, there is a lack of direct proof of the
effectiveness of the proposed methods by the measurement
results. In particular, in [15] and [17], the results of the
radar imaging applications are shown. Despite that, in [15],
no measured beampatterns are presented to prove, in this
case, the array performance assessment method. In [17], a
comparison between the simulated and measured beampat-
terns when focused at boresight is depicted. On the other
hand, no measured beampatterns for DoAs different from the

boresight are reported. That one would be necessary to give
a proof of the validity of the expression of the generalized
beampattern.

The work reported in this article bridges the gaps identified
and highlighted in Section I. In fact, this article presents
and demonstrates the effectiveness of a novel method for the
performance assessment of a MIMO radar system based on a
planar antenna array. Such a method is built on an extensive
analysis of the full ambiguity function as defined in [19].
Thanks to this analysis, it is possible to define a region in
the angular field-of-view of the radar that is characterized by
a low probability to obtain ambiguities in DoA estimation,
hereinafter denoted as ambiguity-free region. The analysis is
performed over a span of 180◦ in the azimuth and elevation
angles, and hence, it estimates the effect of possible interfering
signals out of the field-of-view of interest for a specific appli-
cation. Furthermore, the optimization method is not limited
to array configurations characterized by a squared ambiguity-
free region, namely with the same extension in the azimuth and
elevation angles, but it also considers arrays with an arbitrarily
shaped ambiguity-free region. This provides an additional
degree of freedom and, hence, an augmented adaptability to
the requirements of different applications. A planar MIMO
array composed of four transmitters and eight receivers is
optimized using a genetic algorithm that relies on the proposed
method. Such an array is integrated in a radar system with
a center frequency, fc, of 76.5 GHz and then calibrated
in an anechoic chamber. Unlike the relevant previous work
listed above, in this article, the results of the calibration are
used to evaluate the ambiguity function associated with a
wide set of DoAs, which provides to the reader complete
information regarding the imaging capability of the optimized
array. Finally, a comparison between the measured and simu-
lated ambiguity functions demonstrates the strong agreement
between them.

This article is structured in seven sections. In Section II,
the problem and the mathematical model are introduced
together with the ambiguity function and the ambiguity-free
region concept. A practical example of a 2-D-MIMO array to
describe the performance assessment method is discussed in
Section III. To this purpose, the simulated ambiguity functions
are also shown. The optimization algorithm is introduced
and explained in detail in Section IV. Section V shows the
result of the optimization algorithm with the corresponding
ambiguity function. In Section VI, the hardware with the
corresponding measured ambiguity functions is reported and
compared with the simulations. Section VII will conclude this
article with a summary of the main outcomes.

II. PROBLEM DEFINITION

In this article, the conventional spherical coordinate system
depicted in Fig. 1(a) is considered. The azimuth angle is
denoted as ϕ and the elevation angle as ϑ . The planar array
of transmitter and receiver elements is placed on the xz plane
as it is shown in Fig. 1(b). Moreover, a radar system able to
measure the position of a target in the full half-space y > 0
is considered. Thus, the angular coordinates will be limited in
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Fig. 1. Definition of the coordinate system and representation of the physical parameters of a 2-D-MIMO sparse array. (a) Spherical coordinate system. (b)
Symbolic representation of a 2-D-MIMO array. (c) Associated virtual array.

the interval

A = {(ϕ, ϑ) | ϕ, ϑ ∈ R, 0 � ϕ � π, 0 � ϑ � π}.
The number of the transmitting elements is denoted as Nt ,
while the number of the receiving elements as Nr .

The sets of x- and z-coordinates of the transmitting element
positions are denoted as

pT x = (
xT,1 , . . . , xT,Nt

)
pT z = (

zT,1 , . . . , zT,Nt

)
.

Similarly, the x- and z-coordinates of the receiving element
positions are denoted as

pRx = (
xR,1 , . . . , xR,Nr

)
pRz = (

zR,1 , . . . , zR,Nr

)
.

Multistatic configurations are taken into account in this
article, which means each element can act only either as
a receiver or as a transmitter, but the analysis can be
extended to monostatic configurations too. The employment
of the MIMO technique with multiple diverse transmitted
signals independent of each other is treated. In this way,
it is possible to obtain a receiving steering vector composed
by Nt × Nr elements denoted in the literature as a virtual
steering vector [20]. Specifically, narrowband and orthogonal
transmitted signals are considered to this purpose. Without
loss of generality, isotropic radiating elements are taken into
account.

The steering vector associated with a given DoA, (ϕ, ϑ),
for the transmitter array can be defined as

a(ϕ, ϑ) =
⎛
⎜⎝

e−j 2π
λ (xT,1 cosϕ sinϑ+zT,1 cosϑ)

...

e−j 2π
λ (xT,Nt cosϕ sinϑ+zT,Nt cosϑ)

⎞
⎟⎠. (1)

Similarly, the steering vector associated with a given DoA,
(ϕ, ϑ), for the receiver array can be defined as

b(ϕ, ϑ) =
⎛
⎜⎝

e−j 2π
λ (xR,1 cosϕ sin ϑ+zR,1 cosϑ)

...

e−j 2π
λ (xR,Nr cosϕ sin ϑ+zR,Nr cosϑ)

⎞
⎟⎠. (2)

The virtual steering vector is given by the following relation:

v(ϕ, ϑ) = a(ϕ, ϑ)⊗ b(ϕ, ϑ), (3)

where ⊗ represents the Kronecker product [21]. More explic-
itly, the steering vector associated with the virtual array can
be written as

v(ϕ, ϑ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−j 2π
λ ((xT,1+xR,1) cosϕ sin ϑ+(zT,1+zR,1) cosϑ)

...

e−j 2π
λ ((xT,1+xR,Nr) cosϕ sin ϑ+(zT,1+zR,Nr) cosϑ)

...

e−j 2π
λ ((xT,Nt +xR,1) cosϕ sin ϑ+(zT,Nt +zR,1) cosϑ)

...

e−j 2π
λ ((xT,Nt +xR,Nr ) cosϕ sin ϑ+(zT,Nt +zR,Nr ) cosϑ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

The x- and z-coordinates of its elements are denoted as

pV x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xT,1 + xR,1
...

xT,1 + xR,Nr

...
xT,Nt + xR,1

...
xT,Nt + xR,Nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, pV z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zT,1 + zR,1
...

zT,1 + zR,Nr

...
zT,Nt + zR,1

...
zT,Nt + zR,Nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The apertures of the virtual array in the x- and z-dimensions
are defined as

dx = max
(
pV x

) − min
(
pV x

)
(5)

dz = max
(
pV z

) − min
(
pV z

)
. (6)

In order to introduce the next concepts, the interval A can
be discretized and renamed as

Ad = {(ϕi , ϑ j
) | ϕi , ϑ j ∈ R, i, j ∈ N, 0 � ϕi � π

0 � ϑ j � π, i = 1, . . . , N, j = 1, . . . ,M}
where N and M are the number of possible different DoAs in
the azimuth and elevation angles, respectively.
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According to the definition of the ambiguity function pre-
sented in [19], in this article, the ambiguity function for
2-D-MIMO arrays is defined as

χ
(
ϕr

i , ϑ
r
j , ϕ

e
k , ϑ

e
l

) = v†(ϕr
i , ϑ

r
j ) · v(ϕe

k , ϑ
e
l )

�v†(ϕr
i , ϑ

r
j )��v(ϕe

k , ϑ
e
l )�

(7)

with

i, k = 1, . . . , N, j, l = 1, . . . ,M

and

χ
(
ϕr

i , ϑ
r
j , ϕ

e
k , ϑ

e
l

) ∈ [0, 1].

In (7), the superscript r is used to indicate the real DoAs
and the superscript e to indicate estimated ones.

The analysis of the ambiguity function as defined in (7)
is not trivial as it depends on four variables, namely ϕr

i , ϑr
j ,

ϕe
k , and ϑe

l . In spite of that, it is possible to transform this
4-D-problem into a 2-D one. Let Xi j be the ambiguity function
matrix associated with a real DoA, (ϕr

i , ϑ
r
j ), which is defined

as

Xi j =
⎛
⎜⎝
χ(ϕr

i , ϑ
r
j , ϕ

e
1, ϑ

e
1 ) . . . χ(ϕ

r
i , ϑ

r
j , ϕ

e
1, ϑ

e
M )

...
...

...
χ(ϕr

i , ϑ
r
j , ϕ

e
N , ϑ

e
1 ) . . . χ(ϕ

r
i , ϑ

r
j , ϕ

e
N , ϑ

e
M )

⎞
⎟⎠ (8)

with

Xi j ∈ [0, 1]N×M .

Considering a 2-D-MIMO array with element positions
depicted in Fig. 2, the corresponding ambiguity function
matrix associated with a real DoA, (ϕr , ϑr ) = (90◦, 90◦),
hence, X(ϕr = 90◦, ϑr = 90◦), is reported in Fig. 3(a).

As a first step, it is necessary to calculate the matrices
associated with every pair (ϕr

i , ϑ
r
j ) of real DoAs. These

ambiguity function matrices can be used to build an ambiguity
function hypermatrix H defined as

H = [
Xi j

]
(9)

with

H ∈ [0, 1]N 2×M2
.

Also, in this case, considering the 2-D-MIMO array
in Fig. 2, an example of a reduced version, the corre-
sponding ambiguity function hypermatrix with ϕr , ϑr ∈
{0◦, 30◦, . . . , 180◦} is depicted in Fig. 3(d).

The ambiguity function hypermatrix H as it is stated in (9)
contains all the information of the ambiguity function defined
in (7).

The ambiguity function matrix Xi j , in general, is char-
acterized by a region with high autocorrelation values in
the neighborhood of the associated DoA (ϕr

i , ϑ
r
j ) and by

several local maxima. The highest local maxima of Xi j is
defined as the maximum sidelobe level, and it is denoted as
SLLmax(ϕ

r
i , ϑ

r
j ). This is a critical parameter as it is often used

to evaluate the probability of errors in the DoA estimation [18].
By defining a maximum threshold t for the peak sidelobe level
of Xi j , it is possible to determine for which pair (ϕr

i , ϑ
r
j )

there is a high probability to obtain ambiguities in the DoA

Fig. 2. Positions of the basic 2-D-MIMO array elements with four
transmitters and eight receivers.

estimation. In particular, this case occurs when the maximum
sidelobe level of the ambiguity function SLLmax(ϕ

r
i , ϑ

r
j ) > t .

By performing such a check for all the possible DoAs, we can
define an ambiguity indicator matrix as

Q = [
Qi j

]
(10)

with

Qi j =
{

0, SLLmax(ϕ
r
i , ϑ

r
j ) ≤ t

1, SLLmax(ϕ
r
i , ϑ

r
j ) > t

(11)

and

Q ∈ {0, 1}N×M .

The pairs (ϕr
i , ϑ

r
j ) for which Qi, j = 0 define the

ambiguity-free region. In the following analysis, a threshold
for the peak sidelobe level t = 0.5 = −6 dB is considered.

An estimation of the angular resolution of the MIMO
array in the azimuth and elevation angles is calculated using
the Rayleigh criterion [22]. In particular, they are defined,
respectively, as

�ϕ = 1.22
λ

dx
(12)

�ϑ = 1.22
λ

dz
. (13)

III. MIMO ARRAY PERFORMANCE ASSESSMENT

The performance assessment is mainly based on the
concepts of ambiguity-free region and angular resolution.
To explain the method used to evaluate the performance of
a 2-D-MIMO array, a practical example is proposed. In par-
ticular, a 2-D-MIMO array characterized by four transmitters
and eight receivers is considered.

The positions of the transmitter and receiver elements are
listed in Tables I and II, respectively. The virtual array is
composed by 4 × 8 = 32 elements and it is depicted in
Fig. 2 together with the transmitter and receiver positions. The
virtual apertures on the x- and z-dimensions are dx = 5λ and
dz = 1.5λ, respectively. Thus, the estimated angular resolu-
tions of this MIMO array in the azimuth and elevation angles
are �ϕ = 15.5◦ and �ϑ = 46.6◦, respectively.
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Fig. 3. Ambiguity function plots associated with the basic 2-D-MIMO array. (a) X(ϕr = 90◦, ϑr = 90◦). (b) X(ϕr = 90◦, ϑr = 150◦).
(c) X(ϕr = 150◦, ϑr = 90◦). (d) Reduced ambiguity function hypermatrix H with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦}.

TABLE I

TRANSMITTER POSITIONS OF THE BASIC 2-D-MIMO ARRAY

TABLE II

RECEIVER POSITIONS OF THE BASIC 2-D-MIMO ARRAY

The ambiguity function matrix X(ϕr = 90◦, ϑr = 90◦)
associated with this MIMO array for a hypothetical real DoA
in the boresight direction is shown in Fig. 3(a). In this plot,
the x-axis represents the set of estimated azimuth angles ϕe

k ,

while the y-axis represents the set of estimated elevation
angles ϑe

l . As this plot is associated with the real DoA,
(ϕr , ϑr ) = (90◦, 90◦), in the ideal case, the main high cor-
relation region is expected to be in the neighborhood of the
pair (ϕe, ϑe) = (90◦, 90◦), which represents the main beam
and low correlation values in the surrounding region. The
plot in Fig. 3(a) satisfies such an expectation and highlights
that the maximum sidelobe level of the ambiguity function is
SLLmax(90◦, 90◦) = 0.26 = −11.7 dB.

A reduced version of the ambiguity function hypermatrix
H with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦}, is depicted in Fig. 3(d).
In this plot, discrete sets of values of ϕr

i and ϑr
j are depicted

on the horizontal axis and on the vertical axis, respectively.
Associated with each pair of (ϕr

i , ϑ
r
j ), the respective ambiguity

function matrix Xi j is plotted, and on these plots, two subsets
of ϕe

k , and ϑe
l , with k = 1, . . . , N and l = 1, . . . ,M , need to

be considered on the horizontal axis and on the vertical axis,
respectively.
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Fig. 4. Ambiguity indicator matrix Q of the basic 2-D-MIMO array with
four transmitters and eight receivers.

To facilitate the understanding of the ambiguity function
hypermatrix plot in Fig. 3(d), it can be noticed that the
ambiguity function matrix X(ϕr = 90◦, ϑr = 90◦) in Fig. 3(a)
is corresponding to the real DoA, (ϕr , ϑr ) = (90◦, 90◦) and
highlighted with a green dash-dotted square. In Fig. 3(b) and
(c), the ambiguity function matrices X(ϕr = 90◦, ϑr = 150◦),
X(ϕr = 150◦, ϑr = 90◦) are also plotted. These plots can be
mapped in the reduced ambiguity function hypermatrix in
correspondence of the real DoA (ϕr , ϑr ) = (90◦, 150◦)
that is highlighted with a red dotted square, and
(ϕr , ϑr ) = (150◦, 90◦) that is highlighted with an orange
dashed square. In the reduced ambiguity function hypermatrix
plot, it can also be observed how the main beam is steered
accordingly to the pair of real DoAs, (ϕr

i , ϑ
r
j ), and how

the ambiguities occur at the edges of the sets, where more
regions with high correlation values appear on the same
ambiguity function matrix. An example of the latter effect
can be observed in Fig. 3(b).

The ambiguity indicator matrix Q is depicted in Fig. 4. The
yellow area represents the real DoA values where the associ-
ated ambiguity function matrix presents SLLmax(ϕ

r
i , ϑ

r
j ) > t ,

the blue area represents the real DoA values where the
SLLmax(ϕ

r
i , ϑ

r
j ) ≤ t . In this plot, it can be seen that the basic

array is characterized by an arbitrarily shaped ambiguity-free
region. The regular shape with maximum extension that groups
a contiguous area in the neighborhood of the boresight with
low probability to obtain ambiguities, hereinafter denoted as
contiguous ambiguity-free region, is a rectangle. This means
that its extension on the azimuth plane is different from the
one in the elevation plane. In this specific case, the contiguous
ambiguity-free region is in the range of 27◦ ≤ ϕr ≤ 153◦,
54◦ ≤ ϑr ≤ 126◦ and it is highlighted by the green box inside
the plot in Fig. 4.

IV. 2-D-MIMO SPARSE ARRAY OPTIMIZATION

In order to validate the method for the 2-D-MIMO array
performance assessment and to improve the angular resolution

Fig. 5. Position of the optimized 2-D-MIMO sparse array elements with
four transmitters and eight receivers.

and the extension of the ambiguity-free region with respect to
the previous example, a 2-D-MIMO sparse array is optimized.
Concerning the transmitter and receiver elements, an array of
four patch antennas with parallel feeding is considered. The
proposed method for 2-D-MIMO radar performance assess-
ment is used as the main criterion for the optimization, and
it is implemented in a genetic algorithm whose flowchart is
introduced in [23]. In the genetic algorithm that is special-
ized for a 2-D-MIMO radar optimization, a gene represents
the antenna element position on the plane. Sets of Nt + Nr

genes represent a single full 2-D-MIMO array configuration,
which is a chromosome. A set of twelve chromosomes forms
the population. The constraints applied in the algorithm are
summarized in the following points.

1) The maximum area available for the array elements is
80 mm × 80 mm.

2) The single-element dimension amounts to 2.88 mm ×
3 mm.

3) A discrete set of positions is available, namely a grid
with 2 mm (> λ/2) spacing in the x- and y-directions,
which is required to perform a 2-D-discrete Fourier
transform (2-D-DFT)-based DoA estimation.

4) No overlap between elements of the physical array is
allowed.

5) No overlap between virtual elements is allowed in order
to maximize the number of virtual elements available
and, hence, to increase the extension of the virtual
aperture.

6) The contiguous ambiguity-free region must be larger
than 30◦ ≤ ϕr ≤ 150◦, 30◦ ≤ ϑr ≤ 150◦.

7) The maximum threshold for peak sidelobe levels is
t = 0.5 = −6 dB.

For each chromosome, a cost function is calculated, which is
inversely proportional to the extension of the ambiguity-free
region. Moreover, in the cost function, a higher weight
to the angular region in the interval 30◦ ≤ ϕr ≤ 150◦,
30◦ ≤ ϑr ≤ 150◦ is given. In order to provide a symbolic
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Fig. 6. Ambiguity function plots associated with the optimized 2-D-MIMO sparse array. (a) X(ϕr = 90◦, ϑr = 90◦). (b) H with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦}.

TABLE III

POSITIONS OF THE 2-D-MIMO SPARSE ARRAY TRANSMITTERS

expression of the cost function, A(ϕr
i , ϑ

r
j , ϕ

e
k , ϑ

e
l ) is

defined as a ratio. The numerator is the number
of elements of Xi j which are greater than t , with
30◦ ≤ ϕe ≤ 150◦ and 30◦ ≤ ϑe ≤ 150◦, excluding the
elements representing the main beam. The denominator is
N × M . Similarly, B(ϕr

i , ϑ
r
j , ϕ

e
k , ϑ

e
l ) is defined also as a

ratio. In this case, the numerator is the number of elements
of Xi j which are greater than t , with 0◦ ≤ ϕe ≤ 180◦
and 0◦ ≤ ϑe ≤ 180◦, excluding the main beam, and the
denominator is N × M . The cost function is defined as

f (ϕr
i , ϑ

r
j , ϕ

e
k , ϑ

e
l ) =

N∑
i=1

M∑
j=1

(
A(ϕr

i , ϑ
r
j , ϕ

e
k , ϑ

e
l )

+ c1 B(ϕr
i , ϑ

r
j , ϕ

e
k , ϑ

e
l )

+ c2SLLmax(ϕ
r
i , ϑ

r
j )

)
(14)

where c1 = 1/4 and c2 = 3/4.
As the objective is to increase the extension of the

ambiguity-free region and the aperture of the array, the goal
is to minimize the cost function value.

V. OPTIMIZED 2-D-MIMO SPARSE ARRAY

The positions of the transmitter and receiver elements
of the optimized 2-D-MIMO sparse array are listed
in Tables III and IV, respectively. The transmitter, receiver, and
virtual element positions of the optimized array are depicted
in Fig. 5.

Considering the same amount of elements with respect
to the 2-D-array presented in Section III, the 2-D-MIMO

TABLE IV

POSITIONS OF THE 2-D-MIMO SPARSE ARRAY RECEIVERS

Fig. 7. Ambiguity indicator matrix Q of the optimized 2-D-MIMO sparse
array with four transmitters and eight receivers.

sparse array shows a significant improvement in terms of
angular resolution in both the azimuth and elevation angles.
In particular, the aperture of the virtual array in the x- and
z-directions are dx = 8.67λ and dz = 11.73λ, respectively, and
hence, the estimated angular resolutions in the azimuth and
elevation angles are �ϕ = 8◦ and �ϑ = 5.9◦, respectively. In
Fig. 6(a), the plot of the ambiguity function matrix for a real
DoA at boresight X(ϕr = 90◦, ϑr = 90◦) is reported. In this
plot, in comparison with the plot in Fig. 3(a), a narrower main
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Fig. 8. Optimized 2-D-MIMO sparse array frontend with four transmitter antennas and eight receiver antennas. (a) Front view. (b) Back view.

Fig. 9. Measurement setup for the calibration of the optimized 2-D-MIMO
sparse array.

beam can be noticed. The maximum sidelobe level of the
ambiguity function is SLLmax(90◦, 90◦) = 0.46 = −6.75 dB.

In Fig. 6(b) a reduced version of the ambiguity function
hypermatrix H with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦} is depicted.
By comparing this plot to Fig. 3(d), it can be observed that the
optimized array produces higher sidelobe levels in the neigh-
borhood of the boresight direction. On the other hand, they
do not exceed the threshold t in a larger region of the angular
field-of-view. In particular, analyzing the ambiguity indicator
matrix Q that is plotted in Fig. 7, it can be observed that the
optimized array is characterized by a contiguous rectangular
ambiguity-free region in the neighborhood of the boresight,
which is wider than the one presented in Fig. 4. Specifically,

Fig. 10. Plot of the ambiguity function matrix associated with the optimized
2-D-MIMO sparse array for a real DoA at the boresight. (a) Simulated
X(ϕr = 90◦, ϑr = 90◦). (b) Measured Xm(ϕr = 90◦, ϑr = 90◦).

it is in the range 23◦ ≤ ϕr ≤ 157◦, 26◦ ≤ ϑr ≤ 154◦, which
is also highlighted by the green box inside the plot
in Fig. 7.

The performance analysis of the optimized 2-D-MIMO
array highlights that the array element positions obtained
from the genetic algorithm based on the proposed assess-
ment criterion fully meet the system requirements and satisfy
the constraints that are listed in Section IV. In addition,
the proposed optimization method based on the extensive
analysis of the ambiguity function takes into account the
real DoA in the full angular field-of-view, i.e., in the range
0◦ ≤ ϕr ≤ 180◦, 0◦ ≤ ϑr ≤ 180◦. This overcomes limitations
identified in previous works, where either the maximum
sidelobe level of the ambiguity function at boresight or in a
limited field-of-view for a specific application is considered.
In such a way, the effect of interfering signals outside the
angular field-of-view is neglected. With the approach proposed
in this article, this effect is taken into account, conferring to
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Fig. 11. Plot of the reduced ambiguity function hypermatrix with ϕr ∈ {50◦, 60◦, . . . , 130◦} and ϑr ∈ {75◦, 80◦, . . . , 105◦}. (a) Simulated H. (b) Measured Hm .

the optimized array an improved reliability in terms of DoA
estimation with respect to solutions that are proposed so far
in the literature.

VI. SYSTEM DEMONSTRATOR

In order to demonstrate the effectiveness of the proposed
method, the optimized 2-D-MIMO sparse array is fabri-
cated. A picture of the antenna array frontend is reported
in Fig. 8.

The antenna element is composed by an array of four
patch antennas with parallel feeding. The feeding of the single
patch antenna is implemented through the aperture coupling
technique. The spacing between the patch antennas is λ/2 on
both dimensions, so that the antenna array presents similar
radiation characteristics in the E- and H-planes. Specifically,
the antenna element is characterized by a peak realized gain
at 76.5 GHz of 11 dBi and a half power beamwidth (HPBW)
of approximately 45◦ in the E- and H-planes.

As for the 2-D-MIMO sparse array, in Fig. 8(a) and (b),
it can be observed that the four transmitters are grouped
on the left side in the blue solid square, while the eight
receivers are grouped on the right side in the red dashed
square. The dimensions of this board are 80 mm × 60 mm.
The hardware of the imaging radar used to this purpose is
described in [24].

The array calibration is performed in an anechoic chamber
placing a corner reflector with the radar cross section (RCS)
of 4.5 dBsm at a distance of 5 m from the antenna array.
Measurements of the target are taken by rotating the antenna

array around its phase center over both the azimuth and
elevation angles with steps of 1◦. Fig. 9 shows the mea-
surement setup that is used for the calibration process. The
2-D-MIMO sparse array is connected to the radar transceiver
through the microstrip to rectangular waveguide transition. The
whole system is placed on a turning table that is able to rotate
in the azimuth and elevation angles. A reference coordinate
system in Fig. 9 indicates their orientation. The angular range
where to perform the calibration is established according to the
radiation characteristics of the antenna element. In particular,
the antenna HPBW defines the minimum angular field-of-view
of the radar system. The angular field-of-view can go beyond
these values depending on the antenna radiation pattern and,
hence, on the signal-to-noise ratio (SNR) at the receiver. For
this reason, the calibrated angular region is limited to direc-
tions where the antenna gain presents a decay within 20 dB
with respect to the maximum value. This angular range covers
a span of 120◦ in the azimuth and elevation angles. However,
the measurement setup can perform a rotation in the elevation
angle within a span of 60◦. This leads to a calibration on
the azimuth angle in the range 30◦ ≤ ϕr ≤ 150◦, while on the
elevation angle in the range 60◦ ≤ ϑr ≤ 120◦.

In the calibration process, a block of 256 ramp signals is
transmitted. For each virtual receiving channel, the received
beat signal is processed through the application of a 2-D-DFT
to obtain a range–velocity matrix for each virtual receiving
channel. The results of the 2-D-DFT for each channel are
then accumulated in one range–velocity matrix through a
noncoherent integration so that the SNR can be increased.
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Fig. 12. Plot of the simulated and measured maximum sidelobe levels
SLLmax(ϕ

r
i , ϑ

r
j ) and SLLm

max(ϕ
r
i , ϑ

r
j ) for 50◦ ≤ ϕr ≤ 130◦ and ϑr = 90◦ .

An ordered-statistics constant false alarm rate (OS-CFAR)
algorithm [25] is then applied to the accumulated matrix
to get the range–velocity cell of the target. Finally, with
knowledge of the last item, it is possible to go back to the
range–velocity matrices associated with each virtual receiving
channel. By taking the phase of the target range–velocity cell
in each receiver range–velocity matrix, the steering vector
associated with the specific DoA value can be obtained.

The measured ambiguity function for the 2-D-MIMO sparse
array is calculated through the calibration matrix vm(ϕr

i , ϑ
r
j ),

with i = 1, . . . , 121 and j = 1, . . . , 61, using (7). In Fig. 10(a)
and (b), the simulated and measured ambiguity function matri-
ces, X(ϕr = 90◦, ϑr = 90◦) and Xm(ϕr = 90◦, ϑr = 90◦),
associated with a real DoA at boresight are shown. A strong
agreement between these two plots can be noticed. In particu-
lar, it can be observed that the maximum position of the main
beam is the same in both plots, namely in correspondence
of (ϕe, ϑe) = (90◦, 90◦). The HPBW in the azimuth and
elevation angles is also the same for both plots with 6◦ and 4◦,
respectively. Moreover, the sidelobe levels are comparable as
in the measured ambiguity function matrix, the maximum
sidelobe level is 0.55 = −5.19 dB, while in the simulated one,
it is 0.46 = −6.75 dB.

In Fig. 11(a) and (b), the simulated and measured ambi-
guity function hypermatrices, H and Hm , respectively, are
reported. In order to compare the two plots, an analysis on
the maximum sidelobe level for the simulated and measured
cases is performed. In Fig. 12, a plot of the simulated
SLLmax(ϕ

r
i , ϑ

r
j ) ( ) and of the measured SLLm

max(ϕ
r
i , ϑ

r
j )

( ) with 30◦ ≤ ϕr ≤ 150◦, and ϑr = 90◦ is depicted. In the
measured ambiguity function matrices, a few high autocorre-
lation points can occur at the edge of the angular field-of-
view. This is due to possible reflections caused by the metal
part of the microstrip line to rectangular waveguide transitions
that is in proximity to the antennas. In particular, this item
allows the mechanical connection of the array frontend to the
rectangular waveguides, and it is mounted on front and back
sides of the antenna frontend in correspondence of the green
dotted square in Fig. 8(a) and (b). In order to mitigate the

Fig. 13. Plot of the simulated and measured HPBW, HPBW(ϕr
i , ϑ

r
j ) and

HPBWm(ϕr
i , ϑ

r
j ), in the azimuth angle for 50◦ ≤ ϕr ≤ 130◦ and ϑr = 90◦ .

Fig. 14. Element positions of the further example of the 2-D-MIMO array
with six transmitters and four receivers.

effect of these artifacts, the SLLm
max(ϕ

r
i , ϑ

r
j ) is obtained as

the average of the local maxima in the ambiguity function
matrix characterized by a correlation value greater than 0.4.
In the measured case, sidelobe levels slightly higher than
in the simulated case can occur. However, these values do
not rise above 0.55 = −5.14 dB. Moreover, the maximum
difference between SLLmax(ϕ

r
i , ϑ

r
j ) and SLLm

max(ϕ
r
i , ϑ

r
j ) is

1.7 dB. Such a difference and a ripple of around 1 dB in
the measured maximum sidelobe level are due to small errors
in the evaluation of the steering vector associated with the
virtual array. These slight deviations are mostly caused either
by reflections at the microstrip line to rectangular waveguide
transitions or by a low SNR that may occur at the edges of
the calibration range.

In order to add information to the comparison between
the simulated and measured ambiguity function hypermatri-
ces, the half power beamwidth values in the azimuth angle
HPBW(ϕr

i , ϑ
r
j ) and HPBWm(ϕr

i , ϑ
r
j ) for the simulated and
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Fig. 15. Ambiguity function plots associated with the further example of 2-D-MIMO sparse array with six transmitters and four receivers. (a)
X(ϕr = 90◦, ϑr = 90◦). (b) H with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦}.

measured ambiguity function matrices Xi j and Xm
i j , when

50◦ ≤ ϕr ≤ 130◦ and ϑr = 90◦, are also analyzed. These two
quantities are plotted in Fig. 13 and show a good agreement
between the simulated and measured results. In fact, the sim-
ulated and measured HPBWs are mostly the same in the
analyzed range. Only in few cases, localized at the edges of
the analyzed range, a slight difference between them can be
noticed. These small deviations, similar to the investigation
conducted on the maximum sidelobe level, are due either
to reflections at the microstrip line to rectangular waveguide
transitions or to low SNR at the receivers. In addition, defining
the error between HPBW(ϕr

i , ϑ
r
j ) and HPBWm(ϕr

i , ϑ
r
j ) as

�ψ
(
ϕr

i , ϑ
r
j

) = ∣∣HPBW
(
ϕr

i , ϑ
r
j

) − HPBWm
(
ϕr

i , ϑ
r
j

)∣∣ (15)

with i = 1, . . . , N and j = 1, . . . ,M , and defining the mean
error as

ρ = 1

N M

N∑
i=1

M∑
j=1

�ψ
(
ϕr

i , ϑ
r
j

)
(16)

then, under the condition above, ρ is only 0.51◦.
In this contribution, thanks to the definition of the ambiguity

function hypermatrix, it is possible to display all the infor-
mation contained in the ambiguity function χ(ϕr

i , ϑ
r
j , ϕ

e
k , ϑ

e
l ),

which is a function of four variables. Further to this, unlike
previous works, the measured ambiguity function matrices for
DoAs different from the boresight are shown and compared
to simulations, which proves the effectiveness of the proposed
method for the assessment of the performance and for the
optimization of 2-D-MIMO sparse arrays.

VII. CONCLUSION

In this article, a new approach for the performance assess-
ment of a 2-D-MIMO radar system for 3-D-imaging based on
an extensive analysis of the ambiguity function is proposed
and explained in detail. The point of strength of this method
is the fact that the investigation of the ambiguity function

is performed in the whole angular field-of-view. In this
way, the effect of possible interfering signals outside of the
field-of-view of interest is considered, which improves the
reliability of the results. A genetic algorithm built on the
proposed approach is implemented to optimize a 2-D-MIMO
sparse array composed of four transmitters and eight receivers.
Considering the limited amount of array elements, the resulting
array presents a significant extension of the ambiguity-free
region greater than 120◦ in both the azimuth and elevation
angles with angular resolutions of �ϕ = 8◦ and �ϑ = 5.9◦,
respectively. The antenna positions obtained from the genetic
algorithm are used to realize a 2-D-MIMO array that is imple-
mented in a radar system with an operating frequency centered
at 76.5 GHz. A comparison between the simulated and mea-
sured ambiguity function hypermatrices associated with the
2-D-MIMO sparse array shows in the range 50◦ ≤ ϕr ≤ 130◦,
ϑr = 90◦, a maximum difference between the measured and
simulated maximum sidelobe levels of 1.7 dB, and the mean
error ρ between the simulated and measured HPBW in the
azimuth angle of only 0.51◦. These results highlight a strong
agreement between the simulated and measured results as well
as the reliability of the proposed method.

APPENDIX A
FURTHER EXAMPLE OF THE 2-D-MIMO ARRAY WITH

ARBITRARY AMBIGUITY-FREE REGION

In order to show the potential of the proposed approach to
obtain an arbitrarily shaped ambiguity-free region, one more
example of the 2-D-MIMO array is proposed. In this case, six
transmitters and four receivers are considered. The 2-D-MIMO
array is obtained applying a different constraint on the contigu-
ous ambiguity-free region with respect to the one specified in
Section IV. In particular, it needs to cover the whole analyzed
range in the azimuth angle, i.e., 0◦ ≤ ϕr ≤ 180◦, while being
larger than 70◦ ≤ ϑr ≤ 110◦ in the elevation angle. Moreover,
the constraint related to the minimum spacing between two
elements is reduced to λ/3. The array element positions are
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TABLE V

TRANSMITTER POSITIONS OF THE FURTHER EXAMPLE
OF THE 2-D-MIMO ARRAY

TABLE VI

RECEIVER POSITIONS OF THE FURTHER EXAMPLE
OF THE 2-D-MIMO ARRAY

Fig. 16. Ambiguity indicator matrix Q of the further example of 2-D-MIMO
sparse array with six transmitters and four receivers.

not limited to a discrete set. The maximum threshold for peak
sidelobe levels is set to t = 0.5 = −6 dB.

The positions of the transmitter and receiver elements that
meet this requirement are listed in Tables V and VI, respec-
tively. The virtual array is composed by 6 × 4 = 24 elements
and it is depicted in Fig. 14 together with the transmitter
and receiver positions. The virtual apertures on the x- and
z-dimensions are dx = 2.08λ and dz = 2.03λ, respectively.
Thus, the estimated angular resolutions of this MIMO array
in the azimuth and elevation angles are �ϕ = 33.6◦ and
�ϑ = 34.4◦, respectively.

Fig. 15(a) shows the plot of the ambiguity function
matrix for a real DoA at boresight X(ϕr = 90◦, ϑr = 90◦),
where the maximum sidelobe level of the ambiguity func-
tion is SLLmax(90◦, 90◦) = 0.39 = −8.18 dB. In Fig. 15(b),
a reduced version of the ambiguity function hypermatrix H
with ϕr , ϑr ∈ {0◦, 30◦, . . . , 180◦} is shown. Finally, the ambi-
guity indicator matrix Q is plotted in Fig. 16. In this case,
the optimized array is characterized by a contiguous rec-
tangular ambiguity-free region in the range 0◦ ≤ ϕr ≤ 180◦,
60◦ ≤ ϑr ≤ 120◦, which is highlighted by the green box.

Algorithm 1 Pseudocode of the Genetic Algorithm for the
Optimization of a 2-D-MIMO Sparse Array
Input: fc, ϑ, ϕ, Nt , Nr , t, c1, c2, Np, Ni , tc
Output: pT x,pT z,pRx,pRz

Initialization :
1 for i = 1 to Np do
2 while physical constraints are not met do
3 generation of the random transmitter and receiver

positions pT x ,pT z,pRx ,pRz
4 end while
5 chromosome(i) = (pT x ,pT z,pRx ,pRz)
6 end for

Main LOOP Process
7 while i ≤ Ni do
8 for j = 1 to Np do
9 calculation of the virtual element positions

10 calculation of the associated steering vector
11 calculation of the associated ambiguity function
12 definition of the ambiguity indicator matrix
13 evaluation of the cost function associated with the j −

th chromosome
14 end for
15 ascending sort of the chromosomes with respect to the

cost function
16 if population’s maximum cost function is less than tc

then
17 i = Ni + 1
18 else
19 discarding of the lowest half of the ranking
20 generation of the new transmitter and receiver positions

through pairing and mating of the chromosomes from
the upper half of the ranking

21 i = i + 1
22 end if
23 end while
24 return pT x ,pT z,pRx ,pRz associated with the chromosome

with the lowest cost function

Contrary to the ambiguity indicator matrices in Figs. 4 and
7, it can be noticed that the ambiguity-free region in the
azimuth angle is extended on the full examined range, which
demonstrates the possibility to customize the optimization
of the 2-D-MIMO array to application-defined requirements
concerning the angular ambiguity-free region.

APPENDIX B
GENETIC ALGORITHM

In this section, the main steps of the genetic algorithm
used for the optimization of the 2-D-MIMO sparse array
are summarized in Algorithm 1. According to [23], the
genetic algorithm itself requires three main input parameters,
i.e., the number of chromosomes that form the population Np ,
the maximum number of iterations Ni , and the threshold on
the cost function tc which defines the convergence condition.
The remaining input parameters are used to calculate the cost
function and are defined in Section II and IV of this article.
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